The 11th International Scientific Conference eLearning and software for Education Bucharest, April 23-24, 2015 10.12753/2066-026X-15-074

THE ROLE OF PERCEPTUAL FEEDBACK TRAINING ON SOUND LOCALIZATION ACCURACY IN AUDIO EXPERIMENTS

Oana BĂLAN, Alin MOLDOVEANU, Florica MOLDOVEANU

Faculty of Automatic Control and Computer Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, Bucharest, Romania.

oanab_2005@yahoo.com, alin.moldoveanu@cs.pub.ro, florica.moldoveanu@cs.pub.ro,

Ionuț NEGOI

General Surgery Department, Emergency Hospital of Bucharest, University of Medicine and Pharmacy Carol Davila Bucharest, Romania negoiionut@gmail.com

Abstract: The purpose of this paper is to present and compare the main techniques and methodological approaches aimed to improve audio discrimination in sound localization experiments. As reviewed from the literature, perceptual feedback training procedures provide listeners with the proper auditory/visual feedback concerning the correct sound source location. This type of feedback training can significantly improve localization accuracy, as well as the listener's ability to discern between the sound sources situated in the front and rear hemi-field, reducing the incidence of reversal errors (a very common situation in which the listener perceives a sound coming from the front as emerging from the back and vice versa).

For instance, in a training session, the listener indicates the perceived location of the sound source and receives immediate visual and audio feedback consisting in the presentation of the correct direction of the audio signal and instant playback of continuous streams of the corresponding sound source location. These results are long-term, suggesting that even short periods of training can enhance audio localization performance under 3D sound conditions, using non-individualized Head Related Transfer Functions (in the case of virtual auditory displays).

In this paper we focus on the examination and investigation of the role of perceptual feedback training under controlled conditions in both free-field (using loudspeakers as the main audio rendering channel) and in virtual auditory displays that employ headphone-presented sound. The results obtained from this study will build the basis of a methodology aimed to improve 3D sound localization in the case of the visually impaired people.

Keywords: Sound localization; 3D sound; virtual auditory display; training; perceptual learning.

I. INTRODUCTION

In order to decode the direction of a sound source in space, the human auditory system uses a set of binaural cues (for localization in the horizontal plane) and monaural cues (for vertical localization and front-back disambiguation), the latter being generally referred to as the Head Related Transfer Function (HRTF). As the HRTFs depend on the anatomical features of the listener (pinna, head and torso), they are significantly individualized for each person apart. The processing method of a 3D sound consists of synthesizing an audio signal with the corresponding pair of HRTFs (for the left and for the right ear) of a given position in both the horizontal and the vertical planes and delivering it to the listener via stereophonic headphones. By employing binaural sound synthesis and other spatial effects, the user of a virtual auditory display is provided a high fidelity perception of the acoustic scene, similar to the free-field listening in real-world conditions. Nonetheless, due to the HRTF recording and processing

techniques, to the impossibility of using the filtering properties of the pinna and to the unnaturalness of the virtual auditory environment [1], there is a certain degree of localization bias which is introduced especially in the vertical plane and in the front-back dimension. In order to reduce the incidence of these types of errors, a training-based approach has been devised, so that the listeners could familiarize with the task, the pointing method and with the acoustic perception that is acquired in a virtual auditory environment. This paper presents the main experimental approaches, learning procedures and provisional results aimed to help the listeners to adapt to localization cues that are different from their owns. Moreover, we intent to investigate the modality in which the human auditory system is capable to handle the acoustic sensory experience, to calibrate the sound localization characteristics (the temporal and spectral features of the sound) and to make cognitive adjustments in order to achieve a higher auditory localization accuracy.

II. EFFECTS OF TRAINING ON IMPROVING SOUND LOCALIZATION ACCURACY

As the HRTFs are significantly morphologically-dependent [2], the artificial sound rendered in a virtual auditory display via non-individualized or generic HRTFs introduces a series of artefacts, such as reversal errors (front-back and up-down confusions) and angular localization misjudgements, mainly in the vertical plane. Even though the virtualized sound offers a similar acoustic perception as in the real-world environment (especially in what concerns the sense of direction), it severely lacks externalization, spatiality, distance judgment and dynamic cues (the sound reaching the eardrums does not change automatically as a result of head movement).

In order to reduce the incidence of localization errors, it has been demonstrated that a period of adaptation to the distorted acoustic rendering conditions is required, so that listeners would get accustomed with the demands of the new hearing experience (different temporal and spectral sound characteristics from the ones expected by the listener's auditory system, in-the-head localization or inaccurate distance perception) [3] [4]. In addition to this, the majority of sound localization experiments take into account trial or training sessions (generically referred as the "learning effect"), aimed to familiarize the subjects with the perception of 3D sounds (especially in the case of inexperienced subjects), the requirements of the localization task and the pointing technique [5] [6] [7]. The particularity of this method lies in the fact that the listener learns how to adapt to non-individualized HRTFs, instead of modifying the HRTF to suit the auditory characteristics of each listener [2].

III. PERCEPTUAL FEEDBACK TRAINING FOR IMPROVING SOUND LOCALIZATION IN VIRTUAL AUDITORY DISPLAYS

This section presents some of the most significant sound localization experiments performed in the free-field and in virtual auditory displays that use a perceptual feedback training method (employing visual, proprioceptive or motor techniques) in order to improve sound localization performance under altered auditory cues conditions (Table 1).

Proprioceptive feedback based training for improving sound localization

The training-based sound localization procedure proposed by Honda et al [8] employs proprioceptive feedback cues for spatial acoustic localization under both head-movement-dependent and head-movement-free listening conditions. The subjects were divided into 2 groups: a group where the listeners have been given proprioceptive feedback and a control group with no type of response provided. The results demonstrated that the dynamic cues resulting from head movement, in combination with proprioceptive feedback, conduct to significant improvements in the sound localization accuracy, reducing the rate of angular errors in both the horizontal and the vertical planes.

Audiovisual training effect on monaural spatial hearing in the horizontal plane

It has been recently demonstrated that audiovisual training is able to improve perceptual performance due to the fact that multi-sensory information offers significant feedback about the position of a sound source in space, by enhancing the auditory decoding and by creating a cross-modal reference between the acoustic perception of sound and the visual stimuli. The experiment presented by Strelnikov

[9] aims to test this hypothesis by studying the degree of improvement of audiovisual training on monaural spatial hearing in the horizontal plane. The results showed that audio-visual feedback offers the highest rate of localization improvement, emphasizing the fact that cross-modal sensory interaction is essential for the development of enhanced spatial localization skills in the lack of binaural cues.

Adaptation effects on sound localization accuracy from playing a 3D audio game

In [10], the transfer effects of playing a virtual auditory game were analyzed in a sound localization experiment which involved the participation 40 subjects who used either their own HRTF sets or the HRTFs fitted from 16 listeners. After 2 weeks of training, the sound localization performance improved, reaching similar levels between both groups of subjects who used individualized and fitted HRTFs.

Perceptual plasticity in spatial auditory displays

The experiment presented in [11] investigates the rate of sound localization accuracy improvement when the subjects were exposed to linear transformations of the auditory space, i.e. simple associations between the sound cues and the corresponding directions from the exocentric space. As it has been previously demonstrated that long-term training conducts to significant sound detection enhancements even under difficult auditory conditions, this paper confirmed that short-term adaptation also ensures a notable degree of sound localization plasticity.

HRTF adaptation in a virtual auditory environment

The study of Parseihian at al [1] investigates the human ability to localize virtual sound sources when listening to generic HRTFs in a virtual auditory environment. The experimental procedure consisted of a pre-test, a training and a post-test session. In the post-test session, the results of the trained listeners were compared to the results of a control group of subjects who used individualized sets of HRTFs. The experiment concluded with significant improvements in the sound localization accuracy, especially in the vertical plane, where the trained subjects performed better than the listeners from the control group (with a rate of improvement of approximately 10 degrees).

Multi-modal training as a method for improving non-individualized HRTFs based sound localization

In the experiment presented in [2], a proprioceptive feedback method has been used to help the blindfolded subjects to manipulate the sound sources located at their hand position. The purpose of the experiment is to test whether auditory calibration can be developed by using additional sensory modalities, other than vision. This approach presents the advantage of offering natural interactivity by extending the spatial perception beyond the visual field and by strengthening the association between the sound stimuli and the ecological awareness of controlling the spatial position at the hand level.

Effects of training and pointing method on 3D localization of virtual sound sources

The sound localization accuracy of several trained listeners has been tested using both head and hand pointing methods in a virtual auditory environment [12]. The results of the performed experiments demonstrated that the auditory localization errors decreased after the training session, with the large improvements taking place during the first 400 trials and with slight consequential enhancements beyond the initial 400 training rounds. Moreover, there is no significant effect of the pointing method, proving that this aspect is irrelevant in respect with spatial auditory perception and sound localization performance.

Generalization and long-term effects of auditory training

The experiment presented in [13] confirms that sound localization can be improved as a result of training in the horizontal and vertical plane. The benefits of the training tasks were still persistent one month after, suggesting that the human auditory system possesses the ability to consistently adapt to altered acoustic cues and that the learning effect is available even for the untrained positions and sound types.

sound localization		
Experiment	Sound localization procedure	Results
Proprioceptive	Participants: 32 blindfolded subjects (16	The training phase conducted to significant
feedback	male, 16 female)	sound localization improvements,
based training	Sound stimuli: Triangle waves (200 Hz),	especially for the proprioceptive feedback
for improving	modulated with a 25-Hz sinusoidal envelope,	group.
sound	70 dB SPL, 1 second in duration.	The feedback group obtained a smaller rate
localization	Sound localization approach: 36	of localization errors in the vertical plane.
[8]	loudspeakers, located at 30 degree intervals in	Both unrestricted head movements and
	the horizontal plane and at -30/+30 degrees in	proprioceptive feedback led to a decrease in
	the vertical plane. The listeners from the	the rate of sound localization errors in both
Free-field	restricted head movement group were allowed	the horizontal and the vertical planes.
	to move their heads, while the others were not.	Head movements during the training phase
	Experimental scheme: Pre-test (72 trials), 5	are important for ensuring long-lasting
	training sessions and a post-test phase (10	improvement effects on the sound
	days later, consisting of 72 trials).	localization accuracy.
	Training: The feedback group performed the	Head movements are especially related with
	sound localization tasks with proprioceptive	localization improvements in the horizontal
	feedback, while the control group did not	plane, while proprioceptive feedback is
	benefit from feedback. The training phase	responsible for increasing the sound
	consisted of 36 sound localization trials,	localization accuracy in the vertical plane.
	extended over a period of 5 days.	Proprioceptive feedback is beneficial for
	Test: The post-test session was carried out in	improving spatial localization accuracy,
	order to assess the post-training localization	regardless if the head movements are
	performance and to compare the two groups	restricted or not.
	of subjects.	
Audiovisual	Participants: 18 subjects, divided into 3	In the pre-test phase, the subjects obtained a
training effect	groups.	significantly lower localization
on monaural	Sound stimuli: Rectangular white noise, 50	performance for elevation discrimination
spatial hearing	ms in duration, 60 dB SPL.	than for horizontal localization.
in the	Sound localization approach: 15	In the monaural condition (with one ear
horizontal	loudspeakers arranged in the horizontal plane.	plugged), the listeners obtained a lower
plane	Monaural conditions: one ear of the listener	localization accuracy in the horizontal
[9]	was plugged with an ear plug. The listener	plane.
	indicated the perceived direction using a laser	There was recorded a certain degree of
	beam.	reduction in the spatial error rate in the post-
Free-field	Experimental scheme: A pre-test (under	test phase of the experiment, demonstrating
	normal hearing conditions), a training and a	the beneficial influence of bimodal visual-
	post-test session (with one ear plugged).	auditory training.
	Training: 3 training groups. Group A:	The rate of improvement is the smallest for
	auditory-only conditions, group AV: the	the auditory training group, followed by the
	auditory stimuli were accompanied by visual	group which received feedback about the
	cues and in the group FB, the listeners were	correct response and finally, the highest for
	given feedback about the correct response	the audiovisual training group.
	(also auditory-only condition). 5 days training	Despite the intensive training, the
	practice, 20 trials per loudspeaker, resulting in	localization accuracy never reached the
	300 training trials.	values recorded in the pre-test binaural
	Test: Post-test phase, after 5 consecutive days	conditions.
	of training.	
Adaptation	Participants: 40 subjects (20 women, 20	The number of hits increased and the
effects on	men), divided into 3 groups: a group who used	number of misses decreased with training,
sound	individualized HRTFs (10 subjects), a group	independent of the type of HRTFs used:
localization	who used HRTFs fitted from 16 listeners (10	individualized or fitted from the 16 subjects.
accuracy from	subjects) and a control group of 20 subjects.	The sound localization performance was
playing a 3D	Sound stimuli: A triangle wave (200 Hz),	better in the post-test than in the pre-test
audio game	modulated with a 25-Hz sinusoidal envelope	session.
[10]	(for the training game).	The sound localization accuracy of the
	(for the trunning guine).	trained group (using both individualized and
		uanica group (using bour marviauanzea and

Table 1. Comparative analysis between the most relevant perceptual feedback training solutions for			
sound localization			

	The target stimuli consisted of a 1 s honeybee	fitted HRTFs) increased by approximately
	sound, 70 dB SPL (for the free-field sound	20% as a result of playing the virtual
	localization experiment).	auditory display game.
	Sound localization approach: A speaker	The localization performance of the
Training	array of 36 loudspeakers arranged in the	listeners who used fitted HRTFs was similar
game- Virtual	horizontal plane and at -30/+30 degrees	with that of the subjects who used
Auditory	elevation. The listeners were required to	individualized HRTFs in both free-field and
Display	indicate the perceived direction using a 100	virtual listening conditions.
T I· <i>i</i> · <i>i</i> ·	cm long rod.	The control group localization performance
Localization	Experimental scheme: The pre-test and the post-test free-field sound localization	did not change from the pre-test to the post-test session.
experiment- free-field	experiments consisted of 3 sessions of 108	7 subjects from the trained group have
n ce-neiu	trials each.	undergone the localization test one month
	Training: A virtual auditory display based	after the post-test session. Their results
	game, called Bee Bee Beat, in which the	remained unchanged in comparison with the
	sound of a honeybee appeared at an arbitrary	results of the post-test session,
	direction on a sphere and the listener was	demonstrating that the transfer effects still
	required to use a plastic hammer to hit the	persisted after 1 month.
	honeybee and to detect its position in space.	The long-term sound localization adaptation
	The virtual auditory display allowed head	and transfer effects are based on perceptual
	movements. The first 2 groups of subjects	motor learning as a result of playing the
	(who were blindfolded) played the game 30 min/day for a period of 2 weeks.	training game, proving their effectiveness and high degree of persistency after a period
	Test: A pre-test and a post-test sound	of 1 month in which the listeners hadn't
	localization session in the free-field.	played the game at all.
Perceptual	Participants: 7 subjects.	Even if the linear remapping produces a
plasticity in	Sound stimuli: Short, broadband noises,	high degree of initial bias, after short-term
spatial	convolved with the personalized HRTFs of	training, the listeners became able to adapt
auditory displays	the listeners. Sound localization approach: 10 adaptation	to the new spatial acoustic conditions, recording little residual errors.
[11]	sessions (of 42 runs each). The middle 28 runs	Localization acuity increased, as the
[11]	used a 2x-linear transformation (this means	listeners expected larger-than-normal
	that to each location corresponded the	alterations in the relationship between the
Virtual	doubled angle sound cue), while the first and	perceived sound stimuli and the actual
Auditory	the last runs were based on normal spatial	location of the sound source.
Display	conditions. Each run consisted of 14 trials, in	The auditory system responded better to
	which the listener was required to identify the	linear transformations of the auditory cues
	perceived source location via a handheld	than to unnatural or distorted combinations
	device with visual feedback concerning the	of spatial-acoustic cues that provide a
HRTF	correct response. Participants: 24 subjects (5 women, 9 men).	confusing sound image. At least 2 adaptation sessions were
adaptation in a	Sound stimuli: 40 ms Gaussian broadband	sufficient to improve sound localization
virtual	noise.	under the non-individualized HRTFs
auditory	Sound localization approach: In the post-	conditions.
environment	test session, the listener was required to	By the end of the training sessions, the
[1]	identify the location of the 3D sound by	localization acuity of the listeners who used
	pointing with his hand towards the perceived	non-individualized HRTFs equalized the
	direction.	initial performance of the subjects who used
Vintual	Experimental scheme: An adaptation	individualized HRTFs.
Virtual Auditory	session, where the listeners moved a ball around their body (consequently followed by	For the non-individualized HRTF group, the polar angle error reduced with 23 degrees.
Display	the perception of the corresponding	The front-back confusion rate reduced to
	spatialized sound) and a test session.	25% and the up-down confusion rate
	Training: The adaptation task (3 sessions of	decreased to 11%.
	training had been performed) was designed as	Sound localization performance under non-
	a game-like scenario, where the listener was	individualized HRTF conditions got nearer
	required to search for animal sounds hidden	to the accuracy obtained when using
	required to search for animal sounds hidden around him, using a hand-held position trackball.	to the accuracy obtained when using personalized HRTFs.

	Test: 25 positions (5 repetitions each), full	The auditory gystem is able to underes
	azimuth range of 360 degrees, elevation from	The auditory system is able to undergo plastic changes through audio
	-40 to 90 degrees.	proprioceptive and kinesthetic feedback.
Multi-modal	Participants: 10 subjects (3 women, 7 men),	The test group recorded a slight
training as a	divided into 2 groups: a test group that used	improvement in the sound localization
method for	non-individualized HRTFs and a control	performance (azimuth and elevation errors
improving	group who used their own HRTFs.	and front-back confusion rate) after the
non-	Sound stimuli: Pink noise bursts, 200 ms	adaptation session, converging to the
individualized	duration.	performance level of the control group.
HRTFs based	Sound localization approach: The subjects	The angular error reduced with 6.1 degrees
sound	were required to indicate the perceived sound	between the pre-test and the post-test
localization	source location in a virtual auditory display.	sessions.
[2]	Experimental scheme: A pre-test, an	The rate of front-back confusions decreased
	adaptation and a post-test session. There were	by 9.3% between the pre-test and the post-
	25 positions equally distributed in the	test sessions.
	horizontal field, 5 repetitions each, resulting	There can be concluded that the sound
	in 125 stimuli.	localization improvements are the result of
Virtual	Training : In the training session (designed as	human auditory system adaptation to non-
Auditory	a game-like scenario), the subjects were	individualized HRTFs and not the training
Display	required to search for animal sounds hidden	after effects of the sound localization tasks
	around them. Using a positional hand tracked	imposed by the game scenario.
	ball, the listeners indicated the perceived	Auditory-kinesthetic training is an efficient
	direction of the sound. When the listener	modality for spatial map recalibration in the
	identified the correct location, the pink noise	presence of altered auditory cues. As a
	was replaced by a sound that was similar to	result, visual information as a means of
	that produced by an animal and the next	perceptual feedback can be effectively
	direction was generated having as reference	replaced by other multimodal associations
	point the previous sound source location. In	in order to recalibrate spatial hearing.
	this way, the subject was provided continuous	
	proprioceptive and auditory feedback and	
	could explore the entire spatial field around him.	
	Test: In the pre-test and the post-test sessions,	
	the blindfolded subjects were asked to	
	indicate the perceived sound location using	
	the hand pointing technique.	
Effects of	Participants: 10 subjects (4 female, 6 males),	The spatial auditory localization error was
training and	divided into two training groups: a group	smaller for the hand-pointing method.
pointing	which has been trained with the head-pointing	After training, the listeners showed a
method on 3D	method and another group which has been	considerable improvement in the sound
localization of	trained using the hand-pointing technique.	localization accuracy, especially for the
virtual sound	Sound stimuli: Gaussian white noise bursts	eye-level targets.
sources	with a duration of 500 ms.	The angular localization error decreased
[12]	Sound localization approach: The listeners	from 23 degrees during the pre-test session
	were required to look at the reference position	to 19 degrees in the post-test trials.
	during acoustic stimuli presentation. After the	The most significant improvements had
Virtual	sound presentation, they were asked to point	been recorded during the first 400 training
Auditory	to the perceived direction with the head or	trials. This leads to the conclusion that 400
Display	with the manual pointer.	trials are sufficient to acquire a considerable
	Experimental scheme: 4 blocks of 100 trials	improvement for spatial auditory
	were tested for each subject in all the	localization.
	experimental conditions (HMD/darkness and bacd/band pointing)	The number of front-back confusions
	head/hand pointing).	reduced between the two localization tests.
	Training: The subjects played a simple game	Proprioceptive and visual feedback offered
	in a virtual auditory environment. Via HMD,	an efficient means for improving sound
	a visual target in the form of a rotating cube was presented to the listener and he was	localization, due to the perceptual association between the two sensory
	required to point at it within four seconds.	modalities.
	Auditory information about the direction of	As the listeners improved their localization
	the target was also provided. Then the	performance quite rapidly, it can be
	ine target was also provided. Then the	performance quite rapidity, it call be

	subjects returned to the reference position and listened to the same sound again. While the target could be still visualized, they had to point to it once more. There had been performed 6 blocks per session (50 trials per block), with one or two sessions per day. Test: 2 different environmental conditions (HMD and darkness) and 2 pointing methods (head and hand pointing) were tested.	suggested that the subjects had learned to discern between the spectral differences of the sounds, thus enhancing their selective attention. The localization improvement is the result of the recalibration of the initial audio- visual spatial map due to sensorial plasticity and enriched association between the visual and the auditory system.
Generalization and long-term effects of auditory training [13] Virtual Auditory	Participants: 10 subjects participated in the main condition experiments and 9 listeners in the control group for the experiments which were conducted one month later in order to evaluate the long-term adaptation effects. The control condition was identical with the main condition, except for the post-test session procedure which had 2 sessions (one immediately after training and the other one either one day, one week or one month later). Sound stimuli: Anechoic recordings of speech and white noise with the duration of 3	Azimuth experiment All the listeners improved their sound localization performance after the training session. The spatial localization error decreased from 21 to 15 degrees in the post-test phase. The white noise is more effective for localization than speech (in the post-test session, the listeners who trained with white noise obtained an angular error of 13.8 degrees, while the subjects who trained using the speech sound obtained an average
Auditory Display	speech and white noise with the duration of 3 s, convoluted with non-individualized HRTFs. Sound localization approach: The azimuthal locations were 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 degrees to the right, with the same elevation positions in the median plane. The listeners were required to indicate the apparent source position on a touch screen, together with the level of sound externalization outside the head. Experimental scheme: A pre-test session (where the speech and noise sounds were repeated 10 times), a training session and 5 pre-test sessions. Training: During the training session, the angular locations were restricted to 4 directions. The training stage continued until the subjects were able to locate 80% of the azimuth positions and 70% of the elevation directions for two consecutive trials. Test: There had been 5 post-test sessions: immediately after training, one hour, one day, one week and one mother later.	using the speech sound obtained an average localization error of approximately 18 degrees). The effects of improvement were persistent even after one month after training. The best localization accuracy had been recorded for the frontal and lateral stimuli, while the largest errors were observed in the range 10-40 degrees. The positions which improved most were 0, 10 and 20 degrees, while the positions which improved least were 50, 60 and 90 degrees. The effect of training was significant even for the untrained positions. What is more, several untrained positions recorded higher improvements than the trained ones. The externalization level increased after one week. This fact involves that there is a tendency for sound externalization to improve as the listeners get familiarized with the altered cues and that the rate of improvement evolves slower than in the case of sound localization acuity.

IV. DISCUSSION

The results of the previously presented experiments demonstrate that training plays a fundamental role for auditory adaptation to altered hearing conditions. A rapid adaptation of the auditory system to non-individualized HRTFs is possible through a spatial map recalibration with multimodal sensory associations [2]. The visual, proprioceptive and kinesthetic feedback methods were highly efficient for improving localization performance in the horizontal and in the vertical planes and for reducing the incidence of reversal errors and ambiguous localization judgments. It can be argued that auditory adaptation is not necessarily dependent on the presence of visual stimuli, as higher levels of sound localization performance were achieved as a result of training other sensory modalities and by offering proprioceptive, vestibular or motor feedback. Thus, non-visual adaptation procedures can be

successfully applied to the visually impaired people in order to train them to use virtual auditory display systems based on non-individualized HRTFs [1]. The majority of the subjects who performed a training session reached the same level of localization performance as their counterparts from the control group. In addition to this, the training procedure proved to have long-term effects, as the listeners recorded similar levels of performance even one month after the experiment had taken place [10]. Moreover, the game-based training provided an efficient solution for learning and adaptation to altered acoustic cues. The ludic-based approach for learning to localize sounds in unknown environments helped the players to easily manipulate the location, to recalibrate the spatial representation of the virtual setting and to concentrate their attention on the direction and on the spectral and temporal cues of the incoming sounds [14] [15].

V. CONCLUSIONS

In conclusion, training significantly enhances procedural learning, adaptation, plasticity and the setting of transfer effects for the sighted listeners under altered acoustic conditions in a virtual auditory display. Future plans include the development of a perceptual training strategy aimed to help the blind or blindfolded subjects to adapt to non-individualized HRTFs in order to improve their navigation and orientation abilities in unfamiliar acoustic virtual environments, navigational audio games or 3D sound based electronic travel systems.

Acknowledgements

The work has been funded by the Sectoral Operational Programme Human Resources Development 2007-2013 of the Ministry of European Funds through the Financial Agreement POSDRU/159/1.5/S/132395.

Reference Text and Citations

- Parseihian, G., Katz, B.F.G., 2012. Rapid Head-Related Transfer Function adaptation using a virtual auditory environment. J. Acoust. Soc. Am., Volume 131, Issue 4, 2012
- [2] Blum A., Katz B. F. G., Warusfel O., 2004. Eliciting adaptation to non-individual HRTF spectral cues with multi-modal training. Proceedings of Joint Meeting of the German and the French Acoustical Societies (CFA/DAGA '04), Strasboug, France. 2004. pp. 1225–1226.
- [3] King A.J., Dahmen, J.C., Keating, P., Leach, N.D., Nodal, F.R., Bajo, V.M., 2011. Neural circuits underlying adaptation and learning in the perception of auditory space, Neurosci Biobehav Rev. 2011 Nov;35(10):2129-39. doi: 10.1016/j.neubiorev.2011.03.008. Epub 2011 Mar 22
- [4] Ahissar, M., 2001. Perceptual training: A tool for both modifying the brain and exploring it, PNAS, vol. 98, no.21.
 [5] Ahveninen, J., Iiro P Jääskeläinen, Tommi Raij, Giorgio Bonmassar, Sasha Devore, Matti Hämäläinen, Sari Levän
- [5] Ahveninen, J., Iiro P Jääskeläinen, Tommi Raij, Giorgio Bonmassar, Sasha Devore, Matti Hämäläinen, Sari Levänen, Fa-Hsuan Lin, Mikko Sams, Barbara G Shinn-Cunningham, Thomas Witzel, John W Belliveau, Task-modulated "what" and "where" pathways in human auditory cortex, Proc. Natl. Acad. Sci. U.S.A. Proc Natl Acad Sci U S A 2006 Sep 18;103(39):14608-13. Epub 2006 Sep 18.
- [6] Mendonça, C., 2014. A review on auditory space adaptations to altered head-related cues, Front Neurosci. 2014; 8: 219
- [7] Fritz, J.B., Elhilali, M., David, S.V., Shamma, S.A., 2007. Does Attention Play a Role in Dynamic Receptive Field Adaptation to Changing Acoustic Silence in A1?, Hear Res. 2007 Jul;229(1-2):186-203. Epub 2007 Jan 16.
- [8] Honda, A., Shibata. H., Hidaka, S., Gyoba, J., Iwaya, Y., Suzuki, Y., 2013. Effects of head movement and proprioceptive feedback in training of sound localization, Iperception. 2013 Jun 3;4(4):253-64..
- [9] Strelnikov, K., Rosito, M., Barone, P., 2011. Effect of Audiovisual Training on Monaural Spatial Hearing in Horizontal Plane. PLoS ONE 6(3).
- [10] Honda, A., Shibata, H., Gyoba, J., Saitou, K., Iwaya, Y., Suzuki, Y., 2007. Transfer effects on sound localization performances from playing a virtual three- imensional auditory game. Appl Acoustics 2007; 68(8): 885-96
- [11] Shinn-Cunningham, B. G., Streeter, T., Gyss, J.-F., 2005. Perceptual plasticity in spatial auditory displays, TAP 2 (4), 418-425.
- [12] Majdak, P., Goupell, M.J., Laback, B., 2010. 3-D Localization of Virtual Sound Sources: Effects of Visual Environment, Pointing Method, and Training, Atten Percept Psychophys. Feb 2010; 72(2): 454–469
- [13] Mendonça, C., Campos, G., Dias, P., Santos, J.A., 2013. Learning Auditory Space: Generalization and Long-Term Effects. PLoS ONE 8(10): e77900. doi:10.1371/journal.pone.0077900.
- [14] Ohuchi M., Iwaya Y., Suzuki Y., Munekata T., A comparative study of sound localization acuity of congenital blind and sighted people, Acoustical Science and Technology 27: 290-293, 2006
- [15] Bålan, O., Moldoveanu, A., Moldoveanu, F., Dascalu, M.I., 2014. Navigational 3D Audio-Based Game- Training Towards Rich Auditory Spatial Representation of the Environment, Proceedings of the 18th International Conference on System Theory, Control and Computing, Sinaia, Romania, October 17-19, 2014, pp. 688-693.