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Abstract—Reliable detection of cognitive load would benefit
the design of intelligent assistive navigation aids for the visually
impaired (VIP). Ten participants with various degrees of sight
loss, navigated in unfamiliar indoor and outdoor environments,
while their electroencephalogram (EEG) and electrodermal ac-
tivity (EDA) signals were being recorded. In this study, the
cognitive load of the tasks was assessed in real time based
on a modification of the well-established event-related (de-
)synchronization (ERD/ERS) index. We present an in-depth
analysis of the environments that mostly challenge people from
certain categories of sight loss and we present an automatic
classification of the perceived difficulty in each time instance,
inferred from their biosignals. Given the limited size of our
sample, our findings suggest that there are significant differences
across the environments for the various categories of sight
loss. Moreover, we exploit cross-modal relations predicting the
cognitive load in real-time inferring on features extracted from
the EDA. Such possibility paves the way for the design on less
invasive, wearable assistive devices that take into consideration
the well-being of the VIP.

I. INTRODUCTION

Visual impairment affects approximately 285 million in-
dividuals worldwide according to the W.H.O. [11]. Assistive
navigation aids are essential to the visually impaired (VIP) for
improving their quality of life and increase their independence.
Traditionally, VIP relied exclusively on the white cane due to
its simplicity; despite its reliability in obstacle detection, it
does not provide any information regarding important aspects
of navigation such as the distance, the speed or the shortest
path to the destination. [42]. New technologies came to fill this
gap, enhancing the traditional assistive aids, aiming to improve
the route planning [41], navigating long distances [19], discov-
ering landmarks [32] and detecting obstacles [20], [26], [12].
Ranging from smartphone applications to wearable devices,
assistive navigation aids promote greater independence and
enable VIP to perform tasks formerly impossible or difficult
to accomplish [40]. Yet, the focus of these aids is often on
optimizing way-finding or localization tasks without taking
into consideration the individual’s needs [18].

Building on our previous work [33], [21], in this study,
we place the focus entirely on the visually impaired, assessing
biomarkers that can predict in real time the mental effort of the
visually impaired while navigating in unfamiliar indoor and
outdoor urban environments. The challenges VIP experience
during orientation and mobility tasks can be framed according

to the cognitive load theory [39], since during orientation and
navigation tasks a specific amount of space is consumed by the
working memory for the exact cognitive demands necessary.

We designed two ad-hoc orientation and mobility tasks
gathering a wide range of behavioral and biophysical signals
from 10 VIP with various categories of sight loss (see Ta-
ble I), who volunteered to participate in our study. Collecting
electroencephalogram (EEG) signals, we assess the cognitive
load and task engagement in the performed task. EEG signals
are shown to be stable indicators of the cognitive load in a
variety of tasks performed in controlled laboratory settings, for
instance, learning to navigate using hypertext and multimedia
data [7], [6], [28], learning to use complex maps during
hypermedia navigation [34]. Despite EEG’s ability to capture
the cognitive load when performing a task, its usability in
commercial assistive devices is still in its infancy. For this
reason, we collected a wide range of physiological signals,
such as skin conductance by means of a wearable bracelet.
Based on findings in the literature, skin conductance may pre-
dict the performance in a task under stressful conditions [35],
[27], [36]; confirming such statement in “out-of-laboratory”
conditions bring great advantages in the design of assistive
devices.

We contribute to the existing literature by conducting nav-
igation experiments exclusively “in-the-wild”, where the VIP
participants navigated in predefined indoor and outdoor routes
previously unfamiliar to the them. These routes included a
large variety of obstacles and different urban environments (see
Table II). A machine learning framework was designed based
on random forest classifiers to predict the cognitive load of the
participants for each time instance inferring on physiological
features extracted from the skin conductance signals. The aim
of this study is two-fold; first, we exploit possible effects that
the various urban indoor and outdoor environments may induce
on people in relation to their degree of sight loss, and second,
to pinpoint easily accessible biomarkers that robustly predict
the cognitive load of the VIP’ when navigating in unfamiliar
sites in the wild.

In line with the current literature [35], [27], [36] the
emerging cross-validated results suggest that physiological
features related to skin conductance are accurately and robustly
predicting the amount of cognitive load in real-time. Taking
into consideration these findings, the design of assistive aids
adapt in real time to the requirements and personal needs of



the user.

II. DATA COLLECTION
A. Participants

A total of ten healthy visually impaired adults with dif-
ferent degrees of sight loss participated in the two mobility
studies (6 female; average age = 41 yrs, range = 22—-53
yrs). To help make them feel comfortable and safe, they
were encouraged to walk as usual using their white canes
if they wished so, and were accompanied by their familiar
O&M instructor. Participants were instructed to avoid smoking
normal or e-cigarettes and consuming caffeine or sugar (e.g.,
coffee, coke, chocolate) approximately one hour prior to the
walk. Recruitment was based on volunteering and all VIP were
capable of giving free and informed consent. The study was
approved by the National Bioethics Committee of Iceland. All
data was anonymized before analysis. Seven of the participants
walked both the outdoor and indoor routes, one took part only
in the outdoor study, and two completed only the indoor task
(see Table I).

B. Indoor and Outdoor Routes

The indoor experiment was conducted inside a building of
the University of Iceland in Reykjavik. With the assistance
of VIP caretakers and O&M instructors, we planned a route
to take the VIP through circumstances where different levels
of stress were likely to occur (i.e., of varying complexity
and difficulty). Participants walked the charted route three
times for training purposes. The route comprised five distinct
environments representable of a variety of indoor mobility
challenges (see Table II). Indicatively, participants had to enter
through automated doors, use an elevator, move across a busy
open space, walk down a large spiral staircase, and walk
through other obstacles. The route was approximately 200
meters in length and took on average 5 minutes to walk (range
= 4-8 minutes).

The outdoor route was charted in the city center of Reyk-
javik in Iceland. It comprised eight distinct scenes defined so
as to cluster environmental and situational factors expected to
elicit similar affective reactions. For example, participants had
to walk on a busy shopping street, stroll through an urban park,
cross a major junction, and pass through narrow sidewalks (see
Table II). The route was approximately 1 km long and took
on average 13 min 44 s to walk (range = 9-19 min).

C. Multimodal Biosignals

EEG signals were recorded using the Emotiv EPOC+,! a
mobile headset with 16 dry electrodes registering over the 10-
20 system locations AF3, F7, F3, FC5, T7, P3 (CMS), P7,
01, 02, P8, P4 (DRL), T8, FC6, F4, F8, and FC4 (sampling
rate f, = 128 Hz). Given the practical constraints involved
in monitoring brain electrical activity in the wild, EPOC+
was chosen because it provides a good compromise between
performance (i.e., number of channels and scientific validity
of the acquired EEG signals) and usability (i.e., portability,
preparation time and user comfort) with respect to other
commercial wireless EEG systems [2], [13], [14], [15].

Along with the Emotiv headset, participants were asked
to wear the Empatica E4 wristband? [17]. E4 measures EDA
as skin conductance through 2 ventral (inner) wrist electrodes
(fs = 4 Hz) and BVP through a dorsal (outer) wrist pho-
toplethysmography (PPG) sensor (fs = 64 Hz). E4 further
reports HR, extracted on board from BVP interbeat intervals.
The wristband also includes an infrared thermopile sensor and
a 3-axis accelerometer. E4 is currently the only commercial
multi-sensor device developed based on extended scientific
research in the areas of psychophysiology and affective com-
puting. Additionally, it has a cable-free, watch-like design,
which makes it easier and more aesthetically pleasing to wear,
and thus better fitted to use in the wild compared to other
wearable biosignal devices. Participants were asked to wear
the wristband on the non-dominant hand to minimize motion
artifacts related to handling the white cane [8].

D. General Procedure

Participants walked the outdoor route twice and the in-
door route three times for training purposes. In both studies
directions were only provided during the first walk to help the
VIP familiarize with the route. They were instructed to avoid
unnecessary head movements and hand gestures as well as
talking to their O&M instructor unless there was an emergency.
Video and audio were registered by means of a smartphone
camera to facilitate data annotation (observing behaviors across
the different environments and situations) and synchronization
(start/end of walk, environments, and obstacles). In the out-
door study, GPS coordinates were additionally logged using
a Garmin GPSMAP-64s unit at a rate of 1 registration per
second. Upon completing the last walk, participants were asked
to describe stressful moments they experienced along the route.

III. FEATURE EXTRACTION
A. EEG

The EEG data was first time-domain interpolated using
the Fast Fourier Transform (FFT) to account for missing
samples due to connectivity issues. Subsequently, all signals
were baseline-normalized by subtracting for each participant
and for each channel the mean of resting state registrations.
These were obtained during a series of laboratory studies with
the same participants [37][38].

Based on findings in the neuroscientific literature we ex-
tracted a series of features descriptive of the cognitive and the
physiological state of the participants in each time instance.
The brain activity is characterized by rhythmic patterns across
distinct frequency bands, the definition of which can vary
somewhat among studies. Here we analyzed EEG in six bands,
namely delta (0.5-4 Hz), theta (4-7 Hz), alpha-1 (7-10 Hz),
alpha-2 (10-13 Hz), beta (13-30 Hz), and gamma (30-60 Hz).
Beta activity is associated with psychological and physical
stress, whereas theta and alpha-1 (i.e., lower alpha) frequencies
reflect response inhibition and attentional demands such as
phasic alertness [31]. Alpha-2 (i.e., higher alpha) is related to
task performance in terms of speed, relevance, and difficulty
[23]. Gamma waves are involved in more complex cognitive
functions such as multimodal processing or object representa-
tion [22]. Features related to signal power and complexity were

Thttp://emotiv.com/epoc/

Zhttps://www.empatica.com/e4-wristband



TABLE I: Category of vision impairment and gender of participants.

Category Description Outdoor Route Indoor Route
VI-2 Vision is less than 10% and more than 5% 1 (F) 2 (F, M)
VI-3 Vision is less than 5% and more than being able to count fingers less than one meter away 3(F, EM) 4 (F, KM, F)
VI-4 Not being able to count fingers less than one meter away 2 (F, M) 3(F M, F)
VI-5 No light perception 1 (F) —

Based on the classification of visual impairment by the World Health Organization (http://apps.who.int/classifications/icd10/browse/2016/en\#/H53- H54).

extracted using the PyEEG open source Python module [3].
For each of the 14 EEG channels, we computed the Relative
Intensity Ratio as an indicator of relative spectral power in
each of the six frequency band [30].

Having extracted the power band features from the EEG
signals, we estimated the event-related (de-)synchronization
(ERD/ERS) index, a well-established measure of band power
change in EEG originally proposed by Pfurtscheller and Arani-
bar [29]. It is defined as

baselinel BP — testI BP

ERD/ERS(%) N baselinel BP * 100
where IBP stands for interval band power. The baseline IBP
refers to a pre-stimulus time period without any task demands,
in our case the resting state, whereas the activation interval
(test IBP) refers to the time period while working on the
experimental task. We slightly modified the estimation of the
ERD/ERS index, defining as “test IBP” the time interval of one
second of our recorded data. In this way, we result with one
time point of ERD/ERS per second, where every time point
expresses the synchronization or desynchronization according
to the same baseline.

B. EDA

The skin conductance data was decomposed into two
continuous components, namely, phasic and tonic component
[5]. This decomposition and subsequent extraction of tonic and
phasic electrodermal activity (EDA) features were performed
using the Ledalab toolbox.? Overall, we extracted six features:

3hitp://www.ledalab.de/

TABLE II: Descriptions and mobility challenges of the differ-
ent indoor and outdoor scenes.

Route ID  Scene Challenges

A Shopping Street ~ People, ads, chairs, tables, poles

B Small Street People, poles, ads

C Narrow Alley People, chairs, tables, street ads, trash bins
Outdoor D Urban Park People

E Open Space People

F Crossing Road People

G Crossing Street People

H Construction People

A Door Automated doors (hinged and rotating)

B Elevator Calling the elevator, selecting floor
Indoor C Corridor People with noise, doors open suddenly

D Open Space People

E Stairs Find starting point of stairs

mean tonic EDA (TM) and the number of “spontaneous” SCRs
(i.e., phasic changes not traceable to specific stimulation),
which are known to be particularly suitable for longitudi-
nal monitoring of emotional stress-elicited EDA (i.e., tonic
arousal); sum of amplitudes of registered SCRs (AS) and
average, maximum, and cumulative phasic EDA (PM), which
provide varying indicators of instantaneous phasic arousal [8].

C. BVP and HR

The photoplethysmography sensor of the E4 device mea-
sures the Blood Volume Pulse (BVP) from which it derives
on board the Heart Rate (HR). We min-max normalized both
data streams to account for inter-individual differences [10].

IV. LINEAR MIXED MODEL ANALYSIS
A. Method

To examine differences in mental activity between outdoor
and indoor scenes of varying complexity and obstacles in
relation to the amount of vision loss, a linear mixed model
analysis was conducted for the alpha-1 (lower alpha), and
alpha-2 (upper alpha) bands in each of the two routes (outdoor,
indoor). Linear mixed models perform a regression-like analy-
sis while controlling for random variance caused by differences
in factors such as participant and electrode [24], [4]. We
chose to focus on the alpha bands only because it has been
repeatedly observed that brain activity at those frequencies is
associated with cognitive load in a variety of task demands:
specifically, alpha activity has been shown to fall in magnitude
(i.e., alpha ERD increases) with higher task difficulty (see [1]
for a review).

Fixed factors examined in the analysis included type of
scene (Table II), and category of vision impairment (Table I).
For the latter, two broader categories of vision loss were con-
sidered to better fit the linear models to the data: almost blind
(categories VI-5 and VI-4) and severely impaired (categories
VI-3 and VI-2). Random intercepts for each participant and
electrode position were added. Type III Wald F'-tests were
used to test the significance of the fixed factors and their
interaction [16]. Pairwise comparisons of group means were
carried out with ¢-tests, using Bonferroni-adjusted p-values
where appropriate [25]. Before averaging across conditions, a
logarithmic transformation of single-condition ERD/ERS val-
ues was applied to improve their distributional characteristics.

B. Results

The across-participants average ERD/ERS values for each
environment and for each category of vision impairment are
shown in Fig. 1. For each subplot, mean values for outdoor
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Fig. 1: Average ERD/ERS values for each scene (Table II) and for each category of vision impairment (Severely impaired: visual
acuity less than 10% but greater than 2%; Almost blind: visual acuity less than 2%). (a) Lower alpha band ERD/ERS. (b) Upper
alpha band ERD/ERS. In each subplot, outdoor scenes are depicted in the left panel and indoor environments are drawn in the

right panel.

scenes are depicted in the left panel, whereas those for indoor
environments are drawn in the right panel. Type III Wald F-
test results from the four (two bands X two routes) linear
mixed models are reported in Table III. Vision alone was only
a significant predictor of upper alpha ERD/ERS in the outdoor
route, although the interaction of vision and scene was signif-
icantly influential for both lower and upper alpha ERD/ERS
in the outdoor route. The scene alone had a significant effect
on both bands and in both outdoor and indoor scenarios.

Post-hoc paired samples t-tests showed that ERD/ERS
in the lower alpha band was significantly higher for almost

blind than for severely impaired individuals for the outdoor
environments B [small street; £(13.53) = 2.43,p = 0.030], E
[open space; t(10.87) = 2.75,p = 0.019], and G [crossing
small street without traffic lights; #(14.78) = 2.86,p =
0.012]. Similar trends were found for outdoor ERD/ERS in
the upper alpha band [B: #(20.51) = 4.13,p = 0.001; E:
t(15.85) = 2.14,p = 0.048; G: #(25.92) = 4.20,p < 0.001].
In addition, upper alpha ERD/ERS was found to be signif-
icantly higher for almost blind than for severely impaired
participants for the outdoor environments A [shopping street;
t(13.52) = 2.35,p = 0.035] and H [construction alley;
t(24.07) = 2.47,p = 0.021]. For the indoor environments,



TABLE III: Linear model type III Wald F'-tests for ERD/ERS in the alpha-1 and alpha-2 bands, in the outdoor and indoor routes.

df F

p df F p

alpha-1, outdoor

alpha-1, indoor

Intercept (I) 1,791 620.84 < 0.001 1, 8.21 1074.04 < 0.001
Vision Impair. (VI) 1, 6.02 2.61 0.157 1,7.58 2.62 0.147
Scene (S) 7, 846.56 2.83 0.006 4,916.92 14.58 < 0.001
VI x S 7, 846.36 5.15 < 0.001 4, 915.99 1.09 0.360
alpha-2, outdoor alpha-2, indoor
I 1,7.97 1027.09 < 0.001 1,9.74 903.41 < 0.001
VI 1, 6.05 7.38 0.035 1, 7.37 1.23 0.302
S 7, 833.86 5.39 < 0.001 4, 888.74 20.92 < 0.001
VI x S 7, 833.90 7.30 < 0.001 4, 887.90 1.16 0.325

lower alpha EDR/ERS was only significantly higher for almost
blind than for severely impaired individuals when walking up
and down stairs [scene E; ¢(16.83) = 2.23, p = 0.040].

When averaging across the two VI groups, lower al-
pha ERD/ERS was significantly higher when crossing a
main traffic junction than when passing through the shop-
ping street [t(846.34) = 3.23,p = 0.036], small street
[£(846.47) = 3.27,p = 0.032], and small street crossing
scenes [t(847.22) = 3.22,p = 0.038]. ERD/ERS in the lower
alpha band was higher when passing through the shopping
street than the small street, and higher for the latter than
when crossing a small street, but these differences were not
found to be significant. Similar trends were obtained for upper
alpha ERD/ERS in the outdoor model [3.68 < ¢(833.64 —
—834.56) < 4.44,p < 0.007], while significantly higher
upper alpha ERD/ERS was also observed for the urban park
scene compared to the small street environment [£(833.74) =
3.31,p = 0.027]. For the indoor route, ERD/ERS in the lower
alpha band was significantly higher when using automated
moving doors and when taking the elevator than when walking
along a narrow corridor [£(922.63) = 3.27,p = 0.011
and $(922.43) = 3.48,p = 0.005, respectively], navigating
through an open space [¢(922.57) = 5.06,p < 0.001 and
t(920.34) = 5.32,p < 0.001, respectively], and using the
stairs [¢(914.80) = 5.15,p < 0.001 and ¢(912.93) = 5.47,p <
0.001, respectively]. Lower alpha ERD/ERS was higher for the
elevator than for the door scene, but not significantly so. It was
higher for the corridor than for the stairs environments, and
higher for the latter than for the open space scene, but these
differences were also not found to be significant. Upper alpha
ERD/ERS was also significantly higher when using automated
moving doors and when taking the elevator than in the other
indoor environments [3.19 < #(887.33——893.52) < 7.13,p <
0.015 and 3.22 < ¢(886.08 — —893.01) < 7.27,p < 0.014,
respectively], while trends similar to the outdoor model were
observed for the remaining indoor scene contrasts.

Overall, outdoor and indoor environments that were
more dynamic with respect to complexity and unexpected
obstacles—such as crossing a major road, strolling through an
open urban space, walking through a narrow alley with coffee
tables and advertisement boards, using an elevator, and going
through automatic doors—resulted in substantially higher ERD
values (i.e., lower relative power) across the two alpha bands,
which implies increased task difficulty. These cognitive load

“hotspots” are in full agreement with the scenes reported as
stressful by the participants themselves at the end of the study.

V. AUTOMATIC PREDICTION OF COGNITIVE LOAD
A. Classification Experiments

To automatically identify the cognitive load of urban in-
door and outdoor spaces experienced by VIP while walking
through it based only on their biosignals, we postulated the
study as a supervised classification process. A widely-used
ensemble learning method for classification was employed,
namely Random Forest (RF) classifier [9], selected due to its
ability to deal with possibly correlated predictor variables as
well as because it provides a straightforward assessment of the
variable importances.

The ERD/ERS index of cognitive load was averaged over
all electrodes per frequency band per second. The resulting
averaged index was binned in three chunks, namely “Low”,
“Medium”, and “High” load. We trained a RF model to
predict the aforementioned labels of cognitive load index per
each band, inferring on the features extracted from the skin
conductance and blood volume pulse sensor. The adjustment
of the two most important parameters of RF was performed by
means of grid search parameter estimation with 5 fold cross
validation. We exploited the effect of the number of estimators
[150, 300, 600] as well as the effect of the maximum number of
features [.5, 1, 2] * v/ NumberOfFeatures. Overall, the optimum
number of estimators was 300 and the maximum number of
features was set equal to the total number of features for each
experiment.

TABLE 1V: Classification AUROC weighted metric for all
the environments across the various experiments. The reported
numbers refer to the mean AUROC over all folds in percentile
and in parenthesis the standard deviation is reported.

Frequency Band ~ AUROC Weighted Average (SD)

Delta 0.97 (0.00)
Theta 0.83 (0.00)
Alphal 0.85 (0.00)
Alpha2 0.85 (0.00)
Beta 0.86 (0.00)
Gamma 0.84 (0.00)
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Fig. 2: Feature Importances as emerged from the Gini criterion
of each RF model. The error bars refer to the Gini value over
the 5 folds. Note that EDA, mean tonic EDA (TM), and heart
rate (HR) emerge as the most predictive biomarkers for the
prediction of the cognitive load index all the frequency bands
showing the stability of the approach.

B. Results

Table IV reports the classification results in terms of
AUROC weighted metric. Hereafter, we will refer to AUROC
weighted metric with the term “accuracy”. For each frequency
band, the average accuracy over the 5 folds is reported,
along with the respective standard deviation. We note that for
all frequency bands the performance of the models is quite
accurate and robust.

As mentioned, the ERD/ERS index employed for the
definition of the classes was averaged over all electrodes; in
literature there are many studies associating specific electrodes
to brain functions, for instance C, to memory recall tasks,
however, the Emotiv EPOC+ used for the experiments does not
provide a full coverage of the cranial surface so that to focus on
specific electrodes. Following the exact same scheme for the
classification of the cognitive load states (“Low”, “Medium”,
and “High”) from the separate electrodes per band we obtained
accuracy values identical to the averaged results per band.

Figure 2 depicts the most predictive features of EDA
and heart rate of the cognitive load. Note that the order of
importance and the relative amplitude of the “Gini” importance
value is comparable for all the frequency bands showing the
stability of the approach. These findings are in line with the
studies in the literature, where the skin resistance is stated to
be an important indicator of the cognitive load [35], [27], [36].

VI. CONCLUSIONS

This paper presents a framework for real-time automatic
assessment of cognitive load when visually impaired people
move and navigate in unfamiliar outdoor and indoor envi-
ronments. The objective is to demonstrate the feasibility of
real time tracking of mentally demanding tasks which can be
used as on the fly feedback to assistive devices. Mobility aids
for visually impaired people should be capable of implicitly
adapting not only to changing environments but also to shifts
in the cognitive load of the user in relation to different
environmental and situational factors.

The proposed framework is based on multimodal fusion
of brain and peripheral biosignal features. Using stress-related
features of the EDA signal and an EEG index of cognitive
load based on event-related (de-)synchronization in the alpha
band (ERD/ERS), we identified the most important cognitively
demanding “hotspots” for the generic VIP population as well
as for the specific categories of sight loss, pointing out
the particular needs/difficulties faced by each VIP category.
The high prediction rates in the multimodal classification
experiments (83-97% AUROC Weighted, Table IV are very
encouraging of the proposed approach. Even if the chosen
urban and building sites did not represent all possible different
outdoor and indoor environments and situations in terms of
complexity and difficulty, the charted routes were designed so
as to combine most of the mobility challenges faced by VIP.

Despite being promising, reported findings should be con-
sidered with caution due to the limited number of participants,
which did not allow for an in-depth analysis of specific
stressors in each category of vision impairment. A larger group
study would need to be carried out to confirm and quantify the
trends obtained here. Furthermore, the well-established Emotiv
EPOC+ EEG headset has certain limitations with respect to the
quality of the recorded signal during experiments involving
physical activity “in the wild” such as those presented here.
Future steps of the present study include refining the predictive
model through exploring novel multimodal biosignal features
for cognitive load assessment and comparing different clas-
sifiers. Such findings hopefully pave the way to emotionally
intelligent mobile technologies that take the concept of nav-
igation one step further, accounting not only for the shortest
path but also for the most effortless, least stressful and safest
one.
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