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Abstract—In a complex real-time application, each module 

can be independently developed, therefore, different processes 

need to communicate with each other safely and as quickly as 

possible. This paper proposes a flexible and efficient solution for 
handling the inter-process communication and for helping the 

programmer to quickly create modules that use the producer-

consumer paradigm in order to streamline the data flow betwe e n 

the different processes. The communication is performed by 

means of a first-in first-out circular buffer which is kept in a 
shared memory area in order to allow quick data transfer 

between modules. The proposed solution allows the developme nt 

of complex modularized applications suitable for real-time data 

processing. We describe the use of the proposed framework in a 

practical setup practice to as part of a software synchronization 
mechanism between two acquisition devices: a video capture 

device and an inertial measurement unit 

Keywords—communication; inter-process; real-time; shared 

memory; heterogeneous programming environment 

I.  INTRODUCTION 

Real-time applications that continuously process large 

amounts of data are used in different domains like image 
processing, big data or sensor networks. Such complex 

applications require that the different modules communicate 
with each other quickly and safely. 

For example, a module can obtain images from one or more 

cameras, another module can apply different filters on those 
images, another one can further process those filtered images 

and extract some relevant information, which, in turn, can be 
used by another module to identify certain features from the 

filmed environment. 

There can be different developers for the modules and each 

developer can code using a different programming language, 

therefore, the whole application runs in a heterogeneous 
programming environment, which must ensure proper 

communication between the modules. In a real-time scenario, 
the main goal is to process the information as quickly as 

possible without any potential data loss. 

The research presented in this paper focuses on presenting 

an efficient solution for allowing developers to independently 
create modules that communicate efficiently with each other 

and which form an application used for real-time data 

processing. One of the goals is to use this research in practice 

for synchronizing the data obtained by two processes, each of 
them acquiring the data in real-time from a different device. 

II. PROBLEM STATEMENT AND SOLUTIONS 

Complex real-time applications require an efficient 

communication between the different components of the 
application. In this case, the efficiency is defined by how fast 

and reliable the modules transfer information among them. 

The goal is to have an application which is composed of 

modules created by persons with different programming 

backgrounds and which allows real-time processing of data in a 
somewhat pipeline fashion; i.e., a module can receive data 

from one or more modules, process that data, and then send the 
processed information to other modules. The application can be 

seen as a directed graph in which a node represents a module 
and the edges represent the communication between modules. 

There are different approaches to this problem but the most 
important issue is that each module has to be developed 

independently from the rest of the application and not 

necessarily in the same programming language or even on the 
same type of operating system. 

If the application is distributed between different 
computers, then the communication is performed usually by 

web services, remoting or by a custom protocol that uses TCP. 
A significant advantage of having a distributed application is 

that each module is independent and exposes an API with 

whom users can access the different functionalities. The 
drawback of using this approach is that the data needs to be 

transferred quickly from one module to another, and this is 
largely dependent on the network speed. In this case there are 

two possible approaches to the communication issue: one is to 
have a module send the data directly to the modules that need 

it, and the other one is to use a central repository or database. 

In the latter case, a module sends the data to the repository and  
other modules retrieve it when they can and require it. 

This aspect poses another issue: the data producing and the 
data consuming speed. The considered problem is basically a 

grouping of multiple producer-consumer problems, which 
means that a module produces data and another one consumes 

the data, and, as a result, it produces other data, which in turn is  

consumed by another module and so on. This is a simple, 
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pipeline, scenario which has only three modules. Each module 

has a specific processing rate, which is defined as receiving a 
piece of data, making some computation on it and sending the 

result. If a module which is earlier in the pipeline has a lower 
processing rate than a module which is later in the pipeline, 

then there is no problem in the flow of the application because 
a piece of data can go through the pipeline without any delay. 

The real problem arises when a module produces pieces of data 

faster than another module can process them. This can lead to a 
bottleneck in the system which can be solved by having pieces  

of data skipped from processing or by storing the data 
somewhere. In this latter case, a solution similar to the 

aforementioned repository or database can be used, but the 
application is no longer real-time. 

A high communication speed can be obtained if the 
application is a single process and the different modules are 

execution threads. In this situation, the producer thread writes 

data in a common buffer and the consumer thread reads from 
that buffer. The read and write have to be synchronized but the 

communication speed is significantly improved because there 
is no data transfer overhead as it is the case when using a 

protocol like TCP or, even worse, HTTP or SOAP. This 
approach does not simply solve the processing rate problem but 

significantly reduces it due to the time gained by using a 

common buffer to transfer data between modules. Although, 
the performance improvement is evident, the issue is that the 

modules must be able to be written in different programming 
languages. This means that there must be a coordinator module 

overseeing the data flow between the different threads, and 
each thread must somehow call functions written in another 

programming language. This can be achievable but, from the 

point of view of a module designer, it becomes difficult to 
properly test the implemented functionalities. The thread must 

continuously call one or more library (module) functions and 
make use of the data produced by those functions. Yet another 

issue is to have the possibility to even call those functions 
among the different programming languages. 

A better solution is to have different process es, written in 
different languages, communicate with each other. This way 

each process represents a module and it has the advantage that  

it can be developed independently. The main drawback is, 
again, the communication between processes. One possible 

solution is to have the standard output of one process 
connected to the standard input of another process. This pos es  

two problems. Firstly, the consumer process needs to know 
how to interpret each piece of data (e.g., the first four bytes 

represent the string length, and the rest of the bytes represen t  a 

string of characters). Secondly, one process could require to 
send the same data to multiple processes. For the first problem, 

the solution is to have serialize/deserialize functions which 
convert a data structure to a byte array, and inverse. For the 

second problem, there is no easy solution; in some way the data 
has to be duplicated and sent to the input of the consumer 

processes, which is significantly inefficient. 

Probably the most flexible and fairly efficient method is a 
compromise between having multiple threads which 

communicate via a shared buffer and having multiple processes 
which communicate by means of the standard input/output, i.e., 

a solution with multiple processes that communicate via shared  

memory buffers. The considered approach is described and 

discussed in the Proposed Solution section of this paper. 

Taking into account the aforementioned aspects, the key 

elements of the considered problem are as follows: 

- Multiple modules need to communicate with each 

other in real-time, 

- The modules are independently developed, not 

necessarily in the same programming language, 

- Each module has a specific data process ing rate, 

- Each module can be a producer and/or consumer, 

- Each module must be able to easily interpret the data 
that is being consumed (type safety). 

III. RELATED WORK 

The inter-process communication (IPC) is an important 

component of all modern operating systems and provides the 
basic mechanisms for data exchange between communicating 

processes. However, the applications often need a higher level 
abstraction for a communication channel built on top of the 

basic services provided by the operating system. This is the 

main motivation for the developers to build various libraries 
that hide some of the details of the bare/raw communication 

infrastructure and provide a user-friendly interface that fits the 
applications’ needs. All the designed libraries use one or more 

of the following approaches for effective data transfer: sockets, 
(named) pipes, shared memory or memory mapped files. 

The most efficient approach in terms of memory footprint 
and transfer time uses local memory and kernel level 

mechanisms [1]. This approach is frequently used for the 

development of inter-process communication infrastructure in 
embedded systems which often must satisfy severe real-time 

requirements [2]. These systems have custom resources that 
can be used to implement efficient communication libraries [3]. 

Most of the libraries implement the socket approach. This 
mechanism is supported by all operating systems and allows 

the communication to take place between distinct computing 

systems (e.g., over Ethernet) or between processes on the same  
computer. Although this is a common and flexible approach, its 

throughput may be affected by the communication stack 
overhead (e.g., TCP/IP). Some of the most used and 

representative libraries are outlined below. 

The Apache ActiveMQ [4] is a complex and full featured 

library written in Java that uses sockets. It enables the 

development of message oriented systems and provides APIs 
for working with connectors, message persistence, 

authentication and authorization. Apache ActiveMQ is fast and  
supports many cross language clients (e.g., C, C++, Python, 

etc.) and protocols (e.g., OpenWire, REST, etc.). 

Boost.asio [5] is a library written in C++ that uses sockets 

for communication. Its main feature is asynchronous I/O which 
means that once an I/O operation is initiated it does not block 

the initiating process, allowing for concurrent execution of both 

the process and I/O operation. The library is scalable (i.e., 
allows multiple connections) and efficient (i.e., minimize data 

copying). 
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Fig. 1. Memory layout for the FIFO circular buffer used for the inter-process communication. 

Lab Streaming Layer (LSL) [6] is a system for the unified 
collection of measurement time series that uses sockets. It 

handles both the networking, time-synchronization, (near-) 
real-time access as well as optionally the centralized collection, 

viewing and disk recording of the data. The lab streaming layer 

comes with a built-in synchronized time facility for all 
recorded data which is designed to achieve sub-millisecond 

accuracy on a local network of computers. 

0MQ (ZeroMQ) [7] is an embeddable networking library 

which acts like a concurrency framework. It uses sockets that 
carry atomic messages across various transports like in-

process, inter-process, TCP, and multicast. It is fast and uses an 

asynchronous communication model. The zero component 
from the name comes from: zero administration, zero cost, zero 

waste. 

D-Bus [8] is a message bus system that uses pipes to 

communicate between processes located on the same machine. 
D-Bus communications are based on the exchange of messages 

between processes. The messages are validated and any ill-

formed messages are rejected. D-Bus uses a special daemon 
process that plays the bus role and to which the rest of the 

processes connect using any D-Bus point-to-point 
communications library. 

Mmap [9] is a low level system call that maps files directly 
into local memory pages and allows the sharing of the mapping 

between multiple processes. This is the basic system 
functionality that we use to build our custom behavior on top 

of it. This system call is available on most operating systems 

with minor differences. The access to the mapping may be 
performed using file operations (e.g., read, write) or direct 

memory operations using pointers. 

The data transferred between processes must be represented 

in some known and agreed upon format by communicating 
parties. The two main methods of information representation 

are: binary and text (e.g., ASCII). For binary representation, 

the developer is fully responsible for the definition of the 
fields, their meaning and encoding, as for text representation 

there are two main information interchange formats: XML and 
json. For these formats there are a lot of tools and libraries that 

can be used to manipulate and serialize data. For binary data 
representation, there are some tools that can assist the 

developer in data serialization: binn [10], protocol buffers [11], 

MessagePack [12]. The proposed approach presented in this 
paper uses binary representation of the data. 

IV. PROPOSED SOLUTION 

A. General Overview 

The chosen communication method is by means of shared 

memory. In this approach, a process writes bytes in memory 

and another process reads that information. The proposed 
shared memory component is organized as a fixed-size FIFO 

circular buffer with light synchronization logic. Basically, a 
producer writes at a location (represented by an index in the 

circular buffer) and a consumer reads from a previously written 
location, therefore, removing the need to synchronize the 

access. The only critical points are associated with the access to 

the producer/consumer offsets. 

A controller component makes connections between the 

modules, and manages the processes and data flow between 
them. The controller’s configuration file specifies which 

modules are used, what kind of data they produce/consume, 
how do they connect with each other and how each buffer is 

configured. 

The main drawback is that the data being stored is an array 

of bytes. The proposed method adds a type safety layer using  a 

class generator with a serialization/deserialization component. 
Mainly, the developer creates a json file which describes the 

object class structure. This file is used by the class generator to  
create a corresponding class which has serialization and 

deserialization methods. The class must be used by both the 
producer and the consumer processes in order to facilitate 

communication. 

B. Buffer Internal Structure 

The used buffer is a memory area reserved and shared 
between processes. Each process performs read and write 

operations on that buffer. This area is backed up by a local 

memory map file (mmap file). When the last process finishes 
the work with the memory file, the contents are persisted on the 

local disk. The proposed buffer structure allows a single 
producer to periodically write pieces of data (frames) and 

multiple consumers to read that data from memory. The 
number of consumers and the available memory size are 

specified when initializing the buffer. Fig. 1. shows the 

memory layout for the FIFO circular buffer used for the inter-
process communication. The buffer has two parts. The header 

size is equal to four multiplied by the number of consumers 
and producers; each entry contains offset values in the body 

part of the buffer (the offset size is equal to four bytes), and 
informs the producer about the memory location of the next 
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frame to be written and the consumer about the memory 

location from where to read the next unprocessed frame. 

Different modules must access the same produced frame, 

therefore, the buffer allows multiple consumers to read and 

process the same data. A producer can write a frame at the 

current location only if all the consumers processed the frame 

or frames from the area where the write will occur. Frames 

can have variable sizes, which means that, at some point, a 

frame can take up an area which was previously occupied by 

more than one frame. In order to simplify the frame writing 

logic, if a frame does not fit at the end of the mmap file, then it 

is written from the beginning of the body section. 

This approach allows very fast access to the produced 

frame without creating any copies. The frame resides in the 

reserved memory until it is overwritten. In order to permit 

variable produce/consume rates, the size of the buffer can be 

specified depending on the average frame size. 

If a frame is produced and has to be written in the buffer, 

but there is no space available, then there are two possibilities 

depending on how the write is performed: either return a “full 

buffer” status or wait until there is space available in order to 

write the produced frame. 

Also, the fact that the proposed solution does not allow 

multiple producers, is not a caveat, but rather an advantage. 

Because of this, there is no need for extra synchronization 

logic, which would otherwise reduce the communication 

speed, and it also offers greater flexibility due to the fact that 

the multiple producers problem can be solved by having one 

mmap file for each producer and so each consumer can 

process the written frames in the order they choose. 

C. Buffer Implementation - C++ 

The C++ implementation of the circular buffer uses 
memory map functions exposed by the operating system in 

order to facilitate quick communication between processes.  

A FrameIO component allows reading from or writing to 

the memory map. The processes that need to communicate by 

means of the circular buffer, create a FrameIO object and 
configure it accordingly. There are three configuration modes: 

create, read and write. The first mode is required because the 
mmap file could already be created. Usually, the producer 

creates the file and then creates a FrameIO object configured in 
write mode. The consumers, in turn, create an object 

configured in read mode. 

The critical sections are only when accessing the indices to 

the offset values from the header section of the buffer, i.e., the 

position in the header where the producer locates where the 

next frame is to be written or where the consumer finds the 

next frame to be processed. The buffer is considered full if the 

producer has to write in a location which has not yet been read 

by all the consumers. The buffer is considered empty to a 

consumer if that consumer has to read from the location where 

the producer will write the next object. These checks are 

performed in a synchronized manner by comparing the index 

value in the header section corresponding to the producer to 

the indices in the header section corresponding to each of the 

consumers. 

D. Buffer Implementation - Python 

The Python design for the proposed IPC method uses the 

object oriented paradigm and implements two components that 
abstract the low level details of working with the mapped file 

and the circular buffer management. 

The MmapIPCChannel component abstracts the mmap 
communication channel and provides a basic interface to 

access the channel. This component is responsible with the 
mmap file opening, closing, reading and writing byte strings 

from and into the mapping. Also, it has some utility functions 
that compute free and used space from the mapping, access 

individual bytes and words from the mapping in an atomic way 

by using a system wide semaphore or mutex. These utility 
functions are necessary for header data handling: in the header 

of the mapping are stored pointer to locations in the body of the 
mapping where actual data blocks are stored; writing and 

reading data blocks into or from the mapping implies header 
data update. 

The most important part of the interface of the 

MmapIPCChannel component is represented by reading and 
writing string data functions which are called by clients when 

they need to communicate data blocks. This functionality 
allows the transfer of strings of bytes that are written into or 

read from the mapping. The write function handles the special 
case of full buffer by issuing an appropriate exception that 

must be caught by the caller and handled accordingly. It is als o  
possible to implement a blocking behavior in this case: the 

caller is blocked until the buffer has enough free space to store 

the requested data. The blocking behavior may be implemented  
by using a simple approach which employs test in the loop and 

sleeping. A more efficient approach is by using condition 
variables and semaphores. Both of these behaviors for blocking  

on buffer full remain to be evaluated. The read function 
handles the special case of buffer empty by issuing an 

exception to the caller. The blocking behavior for this situation 

may be implemented in the same way as for the write 
operation.  

In order to optimize the memory footprint of an application 
that uses this method for exchanging data, this component 

offers the possibility for an application to work directly on the 
data stored in the mapping. By using this feature, applications 

avoid the copying of large amounts of data. However, this 

feature must be used with care because an application may 
change the data in the mapping, instead of the data in its local 

copy. This behavior may disturb other processes that may use 
the same data area which now has other content. 

The interface of the MmapIPCChannel has a dedicated 
functionality to update the pointers for reading. This function 

must be invoked by a caller after successfully reading or using 
the data block from the mapping in order to free the space 

allocated to the just read block. 

It is possible for a process to be connected to multiple 
mappings in order to exchange data with many other processes. 

So, we designed a second component, named Communicator, 
with the purpose to hide all the communication details for a 

process that uses one or more memory mapped files for 
communicating data. The topology of data transfers between 
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multiple processes is described in a configuration file which is 

used at application startup and specifies what mappings are 
used between what processes. So, a process which 

communicates with multiple other processes has an array of 
communication channels as those described above. 

E. Class Generator 

The ClassGenerator has the role of adding a type safety 

component to the communication between the modules. It uses  
a JSON file that describes one or more classes, which is then 

used to generate source code in different object-oriented 
programming languages. The generated classes are used by the 

module developers when working with the buffer. Each class 

has generated a serialization and a deserialization method. An 
example representing a class containing a bi-dimensional 

integer array and its size is shown in Fig. 2. 

 
Fig. 2. Example of a JSON file (used by the Class Generator) which 

represents a class with a two-dimensional array of int values. 

When a module produces a frame, an instance of the 
generated class is created and initialized and a write frame 

method is called on the class working with the buffer. That 
method serializes the instance into a byte array, which gets 

stored in the buffer. When a consumer reads the frame, an 

instance of the generated class is created using the byte array 
read from the buffer. This way the consumer module does not 

need to know how to interpret the raw byte array. 

F. Controller Implementation - Python 

A complex application that has multiple communicating 
processes may benefit from the presence of a master controller 

process that manages the creation of mappings and processes at 
application startup and handles some basic control information  

at application runtime (i.e., stop and resume commands for 
individual processes). 

We have designed a Python module that performs the 
following tasks based on the content of a configuration file 

(i.e., in our case is a json file): 

- Creates mappings with specific parameters (e.g., name, 
size), 

- Creates system wide semaphores that may be used to 
avoid concurrency issues between processes on 

accessing shared information, 

- Starts the execution of some processes, possibly with 

command line parameters, 

- Kills the previously started processes, when controller 
ends its execution, 

- Issues commands to the processes using their standard  

input and output as a communication channel  

G. Produce/Consume Rate 

In an application with multiple inter-connected modules 

each module can process a frame with a certain rate. Basically, 

the lowest frame rate at which the system runs without 
problems is given by the module which performs the 

processing with the lowest frame rate. Even so, there can be 
situations in which a frame is sometimes processed slower by 

one or more modules. This situation is overcome by setting a 
larger buffer size in order to allow a faster producer to store a 

few frames until the slower consumer finishes processing its 

current frame. If the buffer is full when a frame is produced, 
then waiting for space to be available can lead to a severe 

slowing down of the system, which is not ideally in a real-time 
environment. There are two solutions to this problem: one is to 

allow dropped frames (if the application context permits it), 
and the other one is to increase the buffer size (if there is 

enough free memory). 

V. EXPERIMENTAL RESULTS 

A. Experiment with Multiple Processes Written in Different 

Programming Languages 

In order to evaluate the correct operation of the proposed 
communication mechanism, we have implemented a synthetic 

testing scenario as presented in Fig. 3. 

Python process
Reads frames from avi file

Puts them into mmap

mmap

C++ process
Reads frames from mmap

Puts them into mmap

2 x Python processes
Reads frames from mmap

Displays them 

C++ process
Reads frames from mmap

Discards them 

mmap

2 x Python processes
Reads frames from mmap

Displays them 

2 x C++ processes
Reads frames from mmap

Discards them 

 
Fig. 3. Example of nine processes which communicate by means of two 

memory map files. 

 In this scenario we have used nine heterogeneously 

developed processes (Python and C++): a process that 

produces image frames by reading the frames of an AVI file 
and putting them into a first mapping; four other processes that  

consume those frames: two of them display the frames; one of 
these processes and writes the frames to a second channel 

[{ 

 "className":"SimpleMatrix", 

 "members":[ 

  { "name":"n", "type":"int", "comment": "" }, 

  { 

   "name":"a", "type":"array", "size":["n*n"], 

   "elem":{ "type":"int" } 

  } 

 ] 

}] 
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which is read by four other processes; again, two of them 

display the frames. This scenario is described into a 
configuration file that is used by the controller module outlined  

above. The controller properly creates mappings and starts all 
the processes. The application runs correctly without blocking 

as observed for long periods of time. 

The size of the data blocks (i.e., frames) that are stored into 

mappings are 120 KB large. The write and read times have 

values lower than 1ms most of the time with sporadic peaks of 
2 ms (which are due to OS scheduling). These values are 

obtained on a common laptop PC with Intel i5 microprocessor, 
16GB RAM and SSD drive. 

B. The Proposed Solution Used in a Real-Time 

Synchronization Mechanism 

In a more practical sense the proposed method was used as 

part of a synchronization mechanism between a video capture 

device (LeopardImaging OV580) and an IMU (i.e. Inertial 
Measurement Unit) (LPResearch LPMS-B). Both devices were 

serviced by separate acquisition processes that communicated 
through the use of two memory mapped files (Fig. 4). From a 

producer-consumer perspective, the video process was the 
producer for the first mmap file and generated requests each 

time a new frame was available. The IMU process consumed 

the requests and sent back the data associated with each frame 
through the use of the second mmap file. 

 
Fig. 4. The proposed solution used in a synchronization mechanism between 
a video capture device and an Inertial Measurement Unit. 

For the requests, the video process produced fixed size 

frames that contained a timestamp, a sequence number and 
computed fps for the video capture; for the responses the IMU 

process produced variable size frames function of the global 
system time and frame rates of the two acquisition devices. 

Before developing this approach based on separate 
processes, the synchronization mechanism was implemented in 

a single multithreaded application. Unfortunately, the 

synchronization could not be achieved due to several reasons 

that were combined with the unpredictability of scheduling: the 
size of the image frames (1280 by 480 pixels) that had to be 

written to disk; high acquisition rate from the IMU device (100 
fps); limited input queue size provided by the IMU API. The 

solution proposed in this paper efficiently managed to solve the 
synchronization problem by ensuring a fast communication 

between the two data acquisition processes. 

VI. CONCLUSION 

The proposed solution is an efficient method for handling 
the inter-module communication given the considered 

specifications and restrictions. It uses shared memory to 

facilitate communication between processes written in different 
programming languages. Moreover, it adds a type safety layer 

by allowing developers to easily specify the type of data that  is  
being accessed via the memory file. From a performance 

standpoint, the processes access the information almost as 
quickly as the situation where there are two threads that 

communicate with each other. 

The main advantage of the proposed solution is its 
flexibility as shown by the two experiments. In the first one 

multiple processes written in C++ and Python transfer data 
between them and in the second, more practical, experiment 

two processes that acquire real-time data use the proposed 
solution in order to ensure a software synchronization between  

the acquired frames. 
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