
PRE-PRIN
T

Real-time inter-process communication in

heterogeneous programming environments

Adrian Alexandrescu, Andrei Stan, Nicolae-Alexandru Botezatu, Simona Caraiman

Faculty of Automatic Control and Computer Engineering,

“Gheorghe Asachi” Technical University of Iasi

Iasi, Romania

{aalexandrescu, andreis, nbotezatu, sarustei}@tuiasi.ro

Abstract—In a complex real-time application, each module

can be independently developed, therefore, different processes

need to communicate with each other safely and as quickly as

possible. This paper proposes a flexible and efficient solution for
handling the inter-process communication and for helping the

programmer to quickly create modules that use the producer-

consumer paradigm in order to streamline the data flow betwe e n

the different processes. The communication is performed by

means of a first-in first-out circular buffer which is kept in a
shared memory area in order to allow quick data transfer

between modules. The proposed solution allows the developme nt

of complex modularized applications suitable for real-time data

processing. We describe the use of the proposed framework in a

practical setup practice to as part of a software synchronization
mechanism between two acquisition devices: a video capture

device and an inertial measurement unit

Keywords—communication; inter-process; real-time; shared

memory; heterogeneous programming environment

I. INTRODUCTION

Real-time applications that continuously process large

amounts of data are used in different domains like image
processing, big data or sensor networks. Such complex

applications require that the different modules communicate
with each other quickly and safely.

For example, a module can obtain images from one or more

cameras, another module can apply different filters on those
images, another one can further process those filtered images

and extract some relevant information, which, in turn, can be
used by another module to identify certain features from the

filmed environment.

There can be different developers for the modules and each

developer can code using a different programming language,

therefore, the whole application runs in a heterogeneous
programming environment, which must ensure proper

communication between the modules. In a real-time scenario,
the main goal is to process the information as quickly as

possible without any potential data loss.

The research presented in this paper focuses on presenting

an efficient solution for allowing developers to independently
create modules that communicate efficiently with each other

and which form an application used for real-time data

processing. One of the goals is to use this research in practice

for synchronizing the data obtained by two processes, each of
them acquiring the data in real-time from a different device.

II. PROBLEM STATEMENT AND SOLUTIONS

Complex real-time applications require an efficient

communication between the different components of the
application. In this case, the efficiency is defined by how fast

and reliable the modules transfer information among them.

The goal is to have an application which is composed of

modules created by persons with different programming

backgrounds and which allows real-time processing of data in a
somewhat pipeline fashion; i.e., a module can receive data

from one or more modules, process that data, and then send the
processed information to other modules. The application can be

seen as a directed graph in which a node represents a module
and the edges represent the communication between modules.

There are different approaches to this problem but the most
important issue is that each module has to be developed

independently from the rest of the application and not

necessarily in the same programming language or even on the
same type of operating system.

If the application is distributed between different
computers, then the communication is performed usually by

web services, remoting or by a custom protocol that uses TCP.
A significant advantage of having a distributed application is

that each module is independent and exposes an API with

whom users can access the different functionalities. The
drawback of using this approach is that the data needs to be

transferred quickly from one module to another, and this is
largely dependent on the network speed. In this case there are

two possible approaches to the communication issue: one is to
have a module send the data directly to the modules that need

it, and the other one is to use a central repository or database.

In the latter case, a module sends the data to the repository and
other modules retrieve it when they can and require it.

This aspect poses another issue: the data producing and the
data consuming speed. The considered problem is basically a

grouping of multiple producer-consumer problems, which
means that a module produces data and another one consumes

the data, and, as a result, it produces other data, which in turn is

consumed by another module and so on. This is a simple,

PRE-PRIN
T

pipeline, scenario which has only three modules. Each module

has a specific processing rate, which is defined as receiving a
piece of data, making some computation on it and sending the

result. If a module which is earlier in the pipeline has a lower
processing rate than a module which is later in the pipeline,

then there is no problem in the flow of the application because
a piece of data can go through the pipeline without any delay.

The real problem arises when a module produces pieces of data

faster than another module can process them. This can lead to a
bottleneck in the system which can be solved by having pieces

of data skipped from processing or by storing the data
somewhere. In this latter case, a solution similar to the

aforementioned repository or database can be used, but the
application is no longer real-time.

A high communication speed can be obtained if the
application is a single process and the different modules are

execution threads. In this situation, the producer thread writes

data in a common buffer and the consumer thread reads from
that buffer. The read and write have to be synchronized but the

communication speed is significantly improved because there
is no data transfer overhead as it is the case when using a

protocol like TCP or, even worse, HTTP or SOAP. This
approach does not simply solve the processing rate problem but

significantly reduces it due to the time gained by using a

common buffer to transfer data between modules. Although,
the performance improvement is evident, the issue is that the

modules must be able to be written in different programming
languages. This means that there must be a coordinator module

overseeing the data flow between the different threads, and
each thread must somehow call functions written in another

programming language. This can be achievable but, from the

point of view of a module designer, it becomes difficult to
properly test the implemented functionalities. The thread must

continuously call one or more library (module) functions and
make use of the data produced by those functions. Yet another

issue is to have the possibility to even call those functions
among the different programming languages.

A better solution is to have different process es, written in
different languages, communicate with each other. This way

each process represents a module and it has the advantage that

it can be developed independently. The main drawback is,
again, the communication between processes. One possible

solution is to have the standard output of one process
connected to the standard input of another process. This pos es

two problems. Firstly, the consumer process needs to know
how to interpret each piece of data (e.g., the first four bytes

represent the string length, and the rest of the bytes represen t a

string of characters). Secondly, one process could require to
send the same data to multiple processes. For the first problem,

the solution is to have serialize/deserialize functions which
convert a data structure to a byte array, and inverse. For the

second problem, there is no easy solution; in some way the data
has to be duplicated and sent to the input of the consumer

processes, which is significantly inefficient.

Probably the most flexible and fairly efficient method is a
compromise between having multiple threads which

communicate via a shared buffer and having multiple processes
which communicate by means of the standard input/output, i.e.,

a solution with multiple processes that communicate via shared

memory buffers. The considered approach is described and

discussed in the Proposed Solution section of this paper.

Taking into account the aforementioned aspects, the key

elements of the considered problem are as follows:

- Multiple modules need to communicate with each

other in real-time,

- The modules are independently developed, not

necessarily in the same programming language,

- Each module has a specific data process ing rate,

- Each module can be a producer and/or consumer,

- Each module must be able to easily interpret the data
that is being consumed (type safety).

III. RELATED WORK

The inter-process communication (IPC) is an important

component of all modern operating systems and provides the
basic mechanisms for data exchange between communicating

processes. However, the applications often need a higher level
abstraction for a communication channel built on top of the

basic services provided by the operating system. This is the

main motivation for the developers to build various libraries
that hide some of the details of the bare/raw communication

infrastructure and provide a user-friendly interface that fits the
applications’ needs. All the designed libraries use one or more

of the following approaches for effective data transfer: sockets,
(named) pipes, shared memory or memory mapped files.

The most efficient approach in terms of memory footprint
and transfer time uses local memory and kernel level

mechanisms [1]. This approach is frequently used for the

development of inter-process communication infrastructure in
embedded systems which often must satisfy severe real-time

requirements [2]. These systems have custom resources that
can be used to implement efficient communication libraries [3].

Most of the libraries implement the socket approach. This
mechanism is supported by all operating systems and allows

the communication to take place between distinct computing

systems (e.g., over Ethernet) or between processes on the same
computer. Although this is a common and flexible approach, its

throughput may be affected by the communication stack
overhead (e.g., TCP/IP). Some of the most used and

representative libraries are outlined below.

The Apache ActiveMQ [4] is a complex and full featured

library written in Java that uses sockets. It enables the

development of message oriented systems and provides APIs
for working with connectors, message persistence,

authentication and authorization. Apache ActiveMQ is fast and
supports many cross language clients (e.g., C, C++, Python,

etc.) and protocols (e.g., OpenWire, REST, etc.).

Boost.asio [5] is a library written in C++ that uses sockets

for communication. Its main feature is asynchronous I/O which
means that once an I/O operation is initiated it does not block

the initiating process, allowing for concurrent execution of both

the process and I/O operation. The library is scalable (i.e.,
allows multiple connections) and efficient (i.e., minimize data

copying).

PRE-PRIN
T

READ
PTR0

4 bytes

READ
PTR1

4 bytes

WRITE
PTR

4 bytes
FREE SPACE...

DATA
FRAME
N bytes

DATA
FRAME
M bytes

DATA
FRAME
P bytes

DATA
FRAME
Q bytes

FREE SPACE

HEADER – fixed size and structure BODY – circular buffer, fixed size with variable length data blocks/frames

Fig. 1. Memory layout for the FIFO circular buffer used for the inter-process communication.

Lab Streaming Layer (LSL) [6] is a system for the unified
collection of measurement time series that uses sockets. It

handles both the networking, time-synchronization, (near-)
real-time access as well as optionally the centralized collection,

viewing and disk recording of the data. The lab streaming layer

comes with a built-in synchronized time facility for all
recorded data which is designed to achieve sub-millisecond

accuracy on a local network of computers.

0MQ (ZeroMQ) [7] is an embeddable networking library

which acts like a concurrency framework. It uses sockets that
carry atomic messages across various transports like in-

process, inter-process, TCP, and multicast. It is fast and uses an

asynchronous communication model. The zero component
from the name comes from: zero administration, zero cost, zero

waste.

D-Bus [8] is a message bus system that uses pipes to

communicate between processes located on the same machine.
D-Bus communications are based on the exchange of messages

between processes. The messages are validated and any ill-

formed messages are rejected. D-Bus uses a special daemon
process that plays the bus role and to which the rest of the

processes connect using any D-Bus point-to-point
communications library.

Mmap [9] is a low level system call that maps files directly
into local memory pages and allows the sharing of the mapping

between multiple processes. This is the basic system
functionality that we use to build our custom behavior on top

of it. This system call is available on most operating systems

with minor differences. The access to the mapping may be
performed using file operations (e.g., read, write) or direct

memory operations using pointers.

The data transferred between processes must be represented

in some known and agreed upon format by communicating
parties. The two main methods of information representation

are: binary and text (e.g., ASCII). For binary representation,

the developer is fully responsible for the definition of the
fields, their meaning and encoding, as for text representation

there are two main information interchange formats: XML and
json. For these formats there are a lot of tools and libraries that

can be used to manipulate and serialize data. For binary data
representation, there are some tools that can assist the

developer in data serialization: binn [10], protocol buffers [11],

MessagePack [12]. The proposed approach presented in this
paper uses binary representation of the data.

IV. PROPOSED SOLUTION

A. General Overview

The chosen communication method is by means of shared

memory. In this approach, a process writes bytes in memory

and another process reads that information. The proposed
shared memory component is organized as a fixed-size FIFO

circular buffer with light synchronization logic. Basically, a
producer writes at a location (represented by an index in the

circular buffer) and a consumer reads from a previously written
location, therefore, removing the need to synchronize the

access. The only critical points are associated with the access to

the producer/consumer offsets.

A controller component makes connections between the

modules, and manages the processes and data flow between
them. The controller’s configuration file specifies which

modules are used, what kind of data they produce/consume,
how do they connect with each other and how each buffer is

configured.

The main drawback is that the data being stored is an array

of bytes. The proposed method adds a type safety layer using a

class generator with a serialization/deserialization component.
Mainly, the developer creates a json file which describes the

object class structure. This file is used by the class generator to
create a corresponding class which has serialization and

deserialization methods. The class must be used by both the
producer and the consumer processes in order to facilitate

communication.

B. Buffer Internal Structure

The used buffer is a memory area reserved and shared
between processes. Each process performs read and write

operations on that buffer. This area is backed up by a local

memory map file (mmap file). When the last process finishes
the work with the memory file, the contents are persisted on the

local disk. The proposed buffer structure allows a single
producer to periodically write pieces of data (frames) and

multiple consumers to read that data from memory. The
number of consumers and the available memory size are

specified when initializing the buffer. Fig. 1. shows the

memory layout for the FIFO circular buffer used for the inter-
process communication. The buffer has two parts. The header

size is equal to four multiplied by the number of consumers
and producers; each entry contains offset values in the body

part of the buffer (the offset size is equal to four bytes), and
informs the producer about the memory location of the next

PRE-PRIN
T

frame to be written and the consumer about the memory

location from where to read the next unprocessed frame.

Different modules must access the same produced frame,

therefore, the buffer allows multiple consumers to read and

process the same data. A producer can write a frame at the

current location only if all the consumers processed the frame

or frames from the area where the write will occur. Frames

can have variable sizes, which means that, at some point, a

frame can take up an area which was previously occupied by

more than one frame. In order to simplify the frame writing

logic, if a frame does not fit at the end of the mmap file, then it

is written from the beginning of the body section.

This approach allows very fast access to the produced

frame without creating any copies. The frame resides in the

reserved memory until it is overwritten. In order to permit

variable produce/consume rates, the size of the buffer can be

specified depending on the average frame size.

If a frame is produced and has to be written in the buffer,

but there is no space available, then there are two possibilities

depending on how the write is performed: either return a “full

buffer” status or wait until there is space available in order to

write the produced frame.

Also, the fact that the proposed solution does not allow

multiple producers, is not a caveat, but rather an advantage.

Because of this, there is no need for extra synchronization

logic, which would otherwise reduce the communication

speed, and it also offers greater flexibility due to the fact that

the multiple producers problem can be solved by having one

mmap file for each producer and so each consumer can

process the written frames in the order they choose.

C. Buffer Implementation - C++

The C++ implementation of the circular buffer uses
memory map functions exposed by the operating system in

order to facilitate quick communication between processes.

A FrameIO component allows reading from or writing to

the memory map. The processes that need to communicate by

means of the circular buffer, create a FrameIO object and
configure it accordingly. There are three configuration modes:

create, read and write. The first mode is required because the
mmap file could already be created. Usually, the producer

creates the file and then creates a FrameIO object configured in
write mode. The consumers, in turn, create an object

configured in read mode.

The critical sections are only when accessing the indices to

the offset values from the header section of the buffer, i.e., the

position in the header where the producer locates where the

next frame is to be written or where the consumer finds the

next frame to be processed. The buffer is considered full if the

producer has to write in a location which has not yet been read

by all the consumers. The buffer is considered empty to a

consumer if that consumer has to read from the location where

the producer will write the next object. These checks are

performed in a synchronized manner by comparing the index

value in the header section corresponding to the producer to

the indices in the header section corresponding to each of the

consumers.

D. Buffer Implementation - Python

The Python design for the proposed IPC method uses the

object oriented paradigm and implements two components that
abstract the low level details of working with the mapped file

and the circular buffer management.

The MmapIPCChannel component abstracts the mmap
communication channel and provides a basic interface to

access the channel. This component is responsible with the
mmap file opening, closing, reading and writing byte strings

from and into the mapping. Also, it has some utility functions
that compute free and used space from the mapping, access

individual bytes and words from the mapping in an atomic way

by using a system wide semaphore or mutex. These utility
functions are necessary for header data handling: in the header

of the mapping are stored pointer to locations in the body of the
mapping where actual data blocks are stored; writing and

reading data blocks into or from the mapping implies header
data update.

The most important part of the interface of the

MmapIPCChannel component is represented by reading and
writing string data functions which are called by clients when

they need to communicate data blocks. This functionality
allows the transfer of strings of bytes that are written into or

read from the mapping. The write function handles the special
case of full buffer by issuing an appropriate exception that

must be caught by the caller and handled accordingly. It is als o
possible to implement a blocking behavior in this case: the

caller is blocked until the buffer has enough free space to store

the requested data. The blocking behavior may be implemented
by using a simple approach which employs test in the loop and

sleeping. A more efficient approach is by using condition
variables and semaphores. Both of these behaviors for blocking

on buffer full remain to be evaluated. The read function
handles the special case of buffer empty by issuing an

exception to the caller. The blocking behavior for this situation

may be implemented in the same way as for the write
operation.

In order to optimize the memory footprint of an application
that uses this method for exchanging data, this component

offers the possibility for an application to work directly on the
data stored in the mapping. By using this feature, applications

avoid the copying of large amounts of data. However, this

feature must be used with care because an application may
change the data in the mapping, instead of the data in its local

copy. This behavior may disturb other processes that may use
the same data area which now has other content.

The interface of the MmapIPCChannel has a dedicated
functionality to update the pointers for reading. This function

must be invoked by a caller after successfully reading or using
the data block from the mapping in order to free the space

allocated to the just read block.

It is possible for a process to be connected to multiple
mappings in order to exchange data with many other processes.

So, we designed a second component, named Communicator,
with the purpose to hide all the communication details for a

process that uses one or more memory mapped files for
communicating data. The topology of data transfers between

PRE-PRIN
T

multiple processes is described in a configuration file which is

used at application startup and specifies what mappings are
used between what processes. So, a process which

communicates with multiple other processes has an array of
communication channels as those described above.

E. Class Generator

The ClassGenerator has the role of adding a type safety

component to the communication between the modules. It uses
a JSON file that describes one or more classes, which is then

used to generate source code in different object-oriented
programming languages. The generated classes are used by the

module developers when working with the buffer. Each class

has generated a serialization and a deserialization method. An
example representing a class containing a bi-dimensional

integer array and its size is shown in Fig. 2.

Fig. 2. Example of a JSON file (used by the Class Generator) which

represents a class with a two-dimensional array of int values.

When a module produces a frame, an instance of the
generated class is created and initialized and a write frame

method is called on the class working with the buffer. That
method serializes the instance into a byte array, which gets

stored in the buffer. When a consumer reads the frame, an

instance of the generated class is created using the byte array
read from the buffer. This way the consumer module does not

need to know how to interpret the raw byte array.

F. Controller Implementation - Python

A complex application that has multiple communicating
processes may benefit from the presence of a master controller

process that manages the creation of mappings and processes at
application startup and handles some basic control information

at application runtime (i.e., stop and resume commands for
individual processes).

We have designed a Python module that performs the
following tasks based on the content of a configuration file

(i.e., in our case is a json file):

- Creates mappings with specific parameters (e.g., name,
size),

- Creates system wide semaphores that may be used to
avoid concurrency issues between processes on

accessing shared information,

- Starts the execution of some processes, possibly with

command line parameters,

- Kills the previously started processes, when controller
ends its execution,

- Issues commands to the processes using their standard

input and output as a communication channel

G. Produce/Consume Rate

In an application with multiple inter-connected modules

each module can process a frame with a certain rate. Basically,

the lowest frame rate at which the system runs without
problems is given by the module which performs the

processing with the lowest frame rate. Even so, there can be
situations in which a frame is sometimes processed slower by

one or more modules. This situation is overcome by setting a
larger buffer size in order to allow a faster producer to store a

few frames until the slower consumer finishes processing its

current frame. If the buffer is full when a frame is produced,
then waiting for space to be available can lead to a severe

slowing down of the system, which is not ideally in a real-time
environment. There are two solutions to this problem: one is to

allow dropped frames (if the application context permits it),
and the other one is to increase the buffer size (if there is

enough free memory).

V. EXPERIMENTAL RESULTS

A. Experiment with Multiple Processes Written in Different

Programming Languages

In order to evaluate the correct operation of the proposed
communication mechanism, we have implemented a synthetic

testing scenario as presented in Fig. 3.

Python process
Reads frames from avi file

Puts them into mmap

mmap

C++ process
Reads frames from mmap

Puts them into mmap

2 x Python processes
Reads frames from mmap

Displays them

C++ process
Reads frames from mmap

Discards them

mmap

2 x Python processes
Reads frames from mmap

Displays them

2 x C++ processes
Reads frames from mmap

Discards them

Fig. 3. Example of nine processes which communicate by means of two

memory map files.

 In this scenario we have used nine heterogeneously

developed processes (Python and C++): a process that

produces image frames by reading the frames of an AVI file
and putting them into a first mapping; four other processes that

consume those frames: two of them display the frames; one of
these processes and writes the frames to a second channel

[{

 "className":"SimpleMatrix",

 "members":[

 { "name":"n", "type":"int", "comment": "" },

 {

 "name":"a", "type":"array", "size":["n*n"],

 "elem":{ "type":"int" }

 }

]

}]

PRE-PRIN
T

which is read by four other processes; again, two of them

display the frames. This scenario is described into a
configuration file that is used by the controller module outlined

above. The controller properly creates mappings and starts all
the processes. The application runs correctly without blocking

as observed for long periods of time.

The size of the data blocks (i.e., frames) that are stored into

mappings are 120 KB large. The write and read times have

values lower than 1ms most of the time with sporadic peaks of
2 ms (which are due to OS scheduling). These values are

obtained on a common laptop PC with Intel i5 microprocessor,
16GB RAM and SSD drive.

B. The Proposed Solution Used in a Real-Time

Synchronization Mechanism

In a more practical sense the proposed method was used as

part of a synchronization mechanism between a video capture

device (LeopardImaging OV580) and an IMU (i.e. Inertial
Measurement Unit) (LPResearch LPMS-B). Both devices were

serviced by separate acquisition processes that communicated
through the use of two memory mapped files (Fig. 4). From a

producer-consumer perspective, the video process was the
producer for the first mmap file and generated requests each

time a new frame was available. The IMU process consumed

the requests and sent back the data associated with each frame
through the use of the second mmap file.

Fig. 4. The proposed solution used in a synchronization mechanism between
a video capture device and an Inertial Measurement Unit.

For the requests, the video process produced fixed size

frames that contained a timestamp, a sequence number and
computed fps for the video capture; for the responses the IMU

process produced variable size frames function of the global
system time and frame rates of the two acquisition devices.

Before developing this approach based on separate
processes, the synchronization mechanism was implemented in

a single multithreaded application. Unfortunately, the

synchronization could not be achieved due to several reasons

that were combined with the unpredictability of scheduling: the
size of the image frames (1280 by 480 pixels) that had to be

written to disk; high acquisition rate from the IMU device (100
fps); limited input queue size provided by the IMU API. The

solution proposed in this paper efficiently managed to solve the
synchronization problem by ensuring a fast communication

between the two data acquisition processes.

VI. CONCLUSION

The proposed solution is an efficient method for handling
the inter-module communication given the considered

specifications and restrictions. It uses shared memory to

facilitate communication between processes written in different
programming languages. Moreover, it adds a type safety layer

by allowing developers to easily specify the type of data that is
being accessed via the memory file. From a performance

standpoint, the processes access the information almost as
quickly as the situation where there are two threads that

communicate with each other.

The main advantage of the proposed solution is its
flexibility as shown by the two experiments. In the first one

multiple processes written in C++ and Python transfer data
between them and in the second, more practical, experiment

two processes that acquire real-time data use the proposed
solution in order to ensure a software synchronization between

the acquired frames.

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme

under grant agreement No 643636 “Sound of Vision”.

REFERENCES

[1] X. Cheng, and L. Zhang, “A research of inter-process com mun ication
based on shared memory and address-mapping”, International
Conference on Computer Science and Network Technology (ICCSNT),
Harbin, 2011, pp. 111 - 114

[2] H. Marzi, L. Hughes, and Y. Lin, “Optimizing interprocess
communication for best performance in real-time systems”, 24th
Canadian Conference on Electrical and Computer Engineering
(CCECE), Niagara Falls, 2011, pp. 1383 - 1386

[3] F. Fischer, A. Muth, and G. Farber, “Towards interprocess
communication and interface synthesis for a heterogen eo us r eal -tim e
rapid prototyping environment”, Proceedings of the Sixth International
Workshop on Hardware/Software Codesign, 1998. (CODES/CASHE
'98), Seattle, pp. 35 - 39

[4] Apache ActiveMQ, http://activemq.apache.org/

[5] Boost.asio,
http://www.boost.org/doc/libs/1_61_0/doc/html/boost_asio.html

[6] Lab Streaming Layer (LSL), https://github.com/sccn/labstreaminglayer

[7] 0MQ (ZeroMQ), http://zeromq.org/

[8] D-Bus, https://www.freedesktop.org/wiki/Software/dbus/

[9] The GNU C Library. Memory-mapped I/O,
http://www.gnu.org/software/libc/manual/html_node/Memory_002dmap
ped-I_002fO.html

[10] binn - Binary Serialization, https://github.com/liteserver/binn

[11] Protocol buffers, https://developers.google.com/protocol-buffers

[12] MessagePack, http://msgpack.org/index.html

