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Abstract—Object detection represents an important task in
various application fields, such as automotive or assistive tech-
nologies. In this context stereo cameras are among the most
common devices used for acquiring images and information
from the environment. Efficient processing of the disparity maps
computed from stereo images represents a crucial step in obstacle
detection algorithms. In this paper we provide an application-
independent framework for obstacle detection based on disparity
processing. In order to identify regions in the 3D environment
that can be classified as obstacles we employ multiple representa-
tions of the disparity map: V-disparity, U-disparity, θ-disparity.
We provide a comprehensive overview of those representations
and their use in obstacle detection algorithms. We evaluate the
proposed framework in the context of automotive and visually
impaired assistive applications, using data from both real and
virtual environments.

Keywords: disparity map, u-disparity, v-disparity, θ-
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I. INTRODUCTION

Obstacle detection has been an active research area, with
results widely used in many fields such as automotive or
assistive systems. The most important goal is to accurately
locate obstacles in front of the camera and measure the
distance to the obstacles. Existing solutions employ either
active or passive sensors. In the category of passive sensors,
stereo vision-based systems can be used to directly compute
distance evaluating the disparities between the two images. An
important focus on disparity processing has been reported in
the automotive and mobile robotics research areas.

In [1] the authors use the properties of the V-disparity image
to develop a solution for the obstacle detection problem for
autonomous driving cars. The longitudinal profile of the road
is estimated and the objects located above the road surface are
then extracted as potential obstacles. The same authors present
in [2] a system that can be divided into two main stages.
The first one deals with on-board road obstacles detection
(the focus is put on obstacle areas and free road surface
extraction), whereas the second one focuses on obstacle char-
acterization (e.g., car/truck discrimination). In [3], Chen et al.
segment the stereo disparity map by employing a depth slicing
technique and then accurately marking the object boundaries

using a region growing method to improve on-road obstacle
segmentation. Another region growing technique for vehicle
detection is suggested by Kormann et al. [4]. The obstacles
are detected using UV-disparity maps, and splines are used for
the road model. Lee et al. [5] perform vehicle detection using
a road feature and disparity histogram. In [6], they present
another stereo-vision based obstacle detection approach using
UV-disparity maps and bird-eye view mapping.

Another research subject present in many works in the
past two decades is the development of systems dedicated
to help the visually impaired to perceive the environment,
for orientation and navigation purposes. The reported efforts
to support the rehabilitation of visually impaired have been
directed towards the development of electronic travel aids and
sensory substitution devices. The development of many of
these devices exploits stereo vision systems and processing
methods for obstacle detection.

Using disparity maps instead of intensity images signif-
icantly simplifies the obstacle detection process. However,
calculating a dense disparity map requires a significant amount
of computation which is burdensome for the overall system.
Moreover, such assistive devices also pose constraints regard-
ing wearability and real time operation. With fast growing
computing systems, dense disparity matching can be achieved
in real-time. Once the disparity map is available, the potential
obstacles in the scene can be identified using different tech-
niques.

Saez et al. [7] propose a stereo-based system that relies
on ground plane information to detect aerial obstacles in
front of a blind user. The proposed method doesn’t explicitly
extract the ground plane, i.e., using model fitting techniques.
However, it maintains the floor of the local map parallel to the
horizontal plane by exploiting an information based method,
more precisely an entropy minimization schema. The work of
Bujacz [8], consists in an iterative algorithm that detects planes
based on the acquired depth map. The spatial points, which
remain after subtraction of the detected planes or form groups
too small to qualify as surfaces, are grouped with their spatial
neighbors and marked as obstacles. Rodriguez et al. [9] also
designed an obstacle detection system based on 3D ground
detection. Ground plane detection is achieved using a model978-1-5090-2720-0/16/$31.00 c©2016 IEEE



PRE-PRIN
T

fitting technique, i.e., RANSAC. This is a global approach,
in contrast with Bujacz’s local approach which exploits the
similarity between neighboring patches in order to group them
into larger surfaces. Mattoccia et al. [10] developed a mobility
aid based on stereo vision which detects obstacles in front of
the user. Ground plane detection is achieved using a modified
RANSAC approach in the v-disparity domain. The obstacles
are considered to be the points that do not lie on this surface
according to a prefixed tolerance threshold.

In this paper we present an obstacle detection algorithm,
which makes use of multiple representations of the disparity
maps such as: U-disparity [11], V-disparity [1], and the re-
cently defined θ - disparity representation [12]. Combining the
main advantages of all representations, the proposed algorithm
is able to accurately identify regions in stereo sequences that
can be classified as obstacles. To the best of our knowledge,
the framework presented in this paper is the first to employ θ
- disparity processing for complex applications.

II. DISPARITY MAP REPRESENTATIONS

A. Disparity Map

Any reliable stereo vision system requires to go through sev-
eral phases before it can be practically exploited. A very im-
portant step is the stereo calibration phase. Once the intrinsic
and extrinsic parameters are recovered, the left and right image
are acquired and denoised. Next, the rectification is performed
to ensure distortion removal and stereo images alignment. By
this means, the correspondences can be restricted to the same
line in both images and thus the computation burden in the
stereo matching step can be reduced.

The disparity map refers to the displacement of the relative
features or pixels between two views. Disparity maps are
essential for various applications like 3D reconstruction, image
based rendering, or robotic navigation. The most basic tool
needed for finding corresponding points in the stereo pair is a
matching cost function that measures image similarity. Most
widely used are matching cost functions that compare image
intensities by their absolute or squared differences [13], [14].

Recently new computational approaches were proposed.
Among them, the ELAS (Efficient Large-Scale Stereo Match-
ing) [15] algorithm proved to have very good results regarding
the density of the generated disparity map. This algorithm uses
a Bayesian approach and performs quite well even in relatively
low-textured images. First, the disparities of a sparse set of
support points are computed using relatively strict constraints.
The image coordinates of the support points are then used to
create a 2D mesh via Delaunay triangulation. Finally, a prior
is computed to reduce the matching ambiguities. In particular,
this prior is formed by calculating a piecewise linear function
induced by the support point disparities and the triangulated
mesh.

In the following subsections different representations of the
disparity map will be presented. For this purpose consider
the disparity map to be denoted by D(x, y), where (x, y)
represents the position of a pixel in the image.

Fig. 1. Disparity image and its row-wise and column-wise histograms

B. V-Disparity

The V-Disparity image [1] provides a good interpretation
of the geometrical content in a scene and has a high accuracy
when it comes to detecting the ground plane. This type of
disparity image can be understood as the disparity histogram
of each line in the disparity map. One of the most important
features of the V-Disparity map is the fact that major planar
surfaces in the scene have corresponding line representations
in the V-Disparity image. Vertical surfaces are mapped into
vertical line segments in the V-disparity image, while the
ground plane corresponds to a slanted line segment.

The V-Disparity map is built based on a disparity map
generated from a stereo image pair (Fig. 1). Consider F ,
a function attached to the input disparity image such that
Fv(D(x, y)) = Dv(x, d), where Dv(x, d) is the V-Disparity
map. The function F sums up all the points with the same
disparity value that appear on every given row of the image.

In Algorithm 1 we present the steps that allow the compu-
tation of the V-Disparity map.

Algorithm 1: V-Disparity Computation
Input: Disparity map D(x, y)
Output: V-Disparity Map Dv(x, d)

1 for each ith column in D do
2 for each jth line in D do
3 if D(i, j) > 0 then
4 Dv(j,D(i, j)) + +

C. U-Disparity

The U-Disparity map [11] has the same building concept as
the V-Disparity map. The main and most important difference
is that the U-Disparity map is a column-wise representation of
the disparity values (Fig. 1). It provides information regarding
the obstacles found in a scene, by marking them with multiple
horizontal lines.

In order to build a U-Disparity map consider a function
Fu, linked to the disparity map, such that Fu(D(x, y)) =
Du(d, y), where Du(d, y) is the desired U-Disparity map. The
Du(d, y) space sums up all the pixels in the initial disparity
map D(x, y) that have the same disparity value and are found
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Fig. 2. left - Disparity image; right - Polar representation of the disparity
map

across the same column y. The steps required to compute the
U-Disparity map are presented in Algorithm 2 .

Algorithm 2: U-Disparity Computation
Input: Disparity map D(x, y)
Output: U-Disparity Map Dv(x, d)

1 for each ith column in D do
2 for each jth line in D do
3 if D(i, j) > 0 then
4 Dv(D(i, j), i) + +

D. θ-Disparity

θ-disparity [12] is a recent approach for representing the 3D
information of a scene. The main idea behind it is to obtain
a radial representation of the significant objects in a set, with
respect to a point of interest, based on the disparity map.

The first step in building the θ transform is to apply a
polar transform over the disparity map, where the pole of the
transform is the middle pixel of the bottom line of the disparity
map. This corresponds to the endpoint of the end effector in
a robotics application or of the head-worn camera position in
the context of assistive systems . Assuming that D(x, y) has
xmax lines and ymax columns, the coordinates of the pole will
be (xmax,

ymax

2 ). An example of polar transformed disparity
map P (ρ, θ) is illustrated in Fig.2, where

ρ ∈

{
0, ...,

√
x2max +

(ymax
2

)2}
(1)

and θ ∈ {0, ..., 180}
The new map displays the set of disparity values that are

laying along the direction angle θ in the original disparity map,
D(x, y) relative to a point of interest, the pole of the transform.
In order to achieve the desired θ disparity map a column wise
histogram will be computed. Moreover, a weighting factor
sin(θ), can be applied to each element in order to emphasise
the nearby obstacles and to avoid the noticeable degeneration
in the polar transformed disparity map P (ρ, θ). As we get
closer to the extreme angle values (0 and 180), the values of
the pixels corresponding to those columns tend to have the
same value.

The θ-disparity map has only positive integer values and
each point indicates the number of pixels from the initial
disparity map, D(x, y), that lie across a certain direction

Algorithm 3: θ-Disparity Computation
Input: Disparity map D(x, y)
Output: θ-Disparity Map Dθ(θ, d)

1 Initialization Dθ ← 0
2 Compute P (ρ, θ) polar transform of D(x, y) around
(xmax,

ymax

2 )
3 for each angle of P: θ = 0 to 180 do
4 for each disparity level d = Dmin to Dmax do
5 for each row of P: ρ = 1 to ρmax do
6 if P (ρ, θ) = d then
7 Dθ(θ, d) + +

8 Dθ(θ, d) = Dθ(θ, d) sin(θ)

and have a disparity value d. The information held in the
θ-disparity map can be interpreted in many different ways,
depending on the goal of the application.

The steps required to obtain a theta disparity map are
presented in Algorithm 3.

III. OBSTACLE DETECTION ALGORITHM

In this section we describe the use of the disparity represen-
tations in the previous section and detail the proposed obstacle
detection algorithm. This algorithm is structured in a series of
steps as depicted in Fig. 3.

Fig. 3. The steps performed in the obstacles detection framework

The algorithm input is the left and right raw images acquired
by the stereo vision system. Using calibration parameters,
a rectification procedure is applied on the input images,
the result being the rectified left and right images. Once
the rectified images are available the disparity map can be
computed. This task is performed using the ELAS algorithm
described in section II-A.

The dense disparity map is further exploited using the three
representations: discussed in the previous section. Each of
these representations has its own contribution to the obstacle
detection algorithm as detailed in the following.

A. Ground Plane Detection
Usually, regions corresponding to the ground plane match

a line in the V-Disparity image. In cases where the ground
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plane occupies a significant region in the image, it corresponds
to the most dominant line in the V-disparity map. To detect
such lines in the V-Disparity map we employ an adapted
version of the Hough Transform [16]. The standard Hough
transform detects all the straight lines that match certain
restrictions in an image. To speed up the algorithm, we use a
simple thresholding algorithm on the V-Disparity image. This
operation removes pixels with a low gray value that correspond
to poorly represented disparities in the original image. This
operation is based on the assumption that the ground plane
should not have less than a user defined number of pixels
located on each line.

One shortcoming associated with the standard V-disparity
based ground plane detection method is that it cannot be
applied on images where the ground plane is not horizontal.
For non-zero roll camera rotations, estimation of the ground
plane based on the V-disparity using the Hough Transform
becomes a difficult task. This is due to the fact that the ground
plane in the V-disparity domain is no longer represented by a
single line. For larger roll angles the disparity map should be
rotated before calculating the V disparity map.

To detect the roll rotation angle of the camera we can make
use of stereo vision motion estimation procedures. Libviso2
[17] is a fast algorithm for computing the 6 DOF motion of a
moving mono/stereo camera. For stereo sequences, libviso2,
uses a procedure to extract ”circular” feature matches and
project feature points from the previous frame into 3D via
triangulation, using the calibration parameters of the stereo
camera rig. Assuming squared pixels and zero skew, instead
of minimizing the residuals in Euclidean space, the Libviso2
framework makes use of the intrinsic parameters of the stereo
camera to minimize the residuals in the image space, where
the noise level is similar for all components of the measure-
ment vector, thus recovering the motion in a 6 parameters
representation.

Once the camera motion is recovered, the roll-pitch-yaw
parameterization can be easily computed and the V-disparity
image can be rotated accordingly, thus ensuring robust ground
plane detection results.

B. Obstacle Detection using U and θ-disparity maps

The effectiveness of the U-disparity representation is re-
vealed in automotive applications where the detection of the
road boundaries is of interest. In the U-disparity map, obstacles
are usually represented as horizontal lines. This represents the
main technique for obstacles identification using U-disparity
map. However, when an obstacle is passing near the camera
side, both the front and side faces of the obstacle are observed.
The obstacle is then represented by a polyline in the V-
disparity image: a horizontal part for frontage and a connected
oblique part for its side face. This observation allows us to
define an approach in which the U-disparity image can be
easily segmented, after the ground plane is removed from
the disparity map. The obstacles are represented in the image
by connected-regions. Noisy pixels are removed from the V-
disparity map by means of morphological operations (erosion

and dilation). Each connected-region resulting after these pre-
processing steps indicates a potential obstacle.

The segmentation of the θ-disparity image employs simi-
lar steps as in the processing of the U-disparity maps: the
ground plane pixels are removed from the image, followed by
thresholding, morphological operations and finally, detection
of connected components. The strong points of the θ represen-
tation of the disparity result from the following observations: it
makes no assumption about the sensor-environment geometry
and it preserves the direction and angular distribution of
obstacles and obstacle-free regions in a scene, while it can
be estimated in a very efficient way.

The robustness of the obstacle detection algorithm is in-
creased by performing various set operations on the obstacles
pixels detected with the two methods. Depending on the
actual obstacle detection application, the final segmentation
results can be obtained using the intersection or the union
of the results produced by the two methods. For example,
in scene understanding for human assistive applications it
is usually important to also produce a description of the
obstacles, regarding size, shape and distance to the user. In
such cases, the intersection of the two results can avoid under-
segmentation and lead to better object separation and tracking
in consecutive frames. Moreover, a description of the free
navigable space in the environment can be efficiently extracted
based on the θ-disparity segmentation.

IV. EXPERIMENTAL RESULTS

In this section we describe the experiments performed for
evaluating the proposed obstacle detection framework. The
evaluation is performed using data acquired from both real
and virtual environments. To simulate an automotive applica-
tion context for our framework, we used the KITTI Vision
Benchmark Suite [18]. Images and ground truth information
are generated from a virtual environment in order to test new
applications for visually impaired assistive devices. The results
obtained with the proposed obstacle detection framework are
also made available online12.

A. Results Obtained in a Real Environment Setup

The KITTI benchmark dataset was captured using a station
wagon dedicated to mobile robotics and autonomous driving
research. The vehicle was equipped with two color and two
grayscale PointGrey Flea2 video cameras (10Hz, resolution:
1392×512 pixels, opening: 90o×35o). Camera setup is chosen
such that we obtain a baseline of roughly 54 cm between the
same type of cameras and that the distance between color
and grayscale cameras is minimized (6cm). The scenarios are
diverse, capturing real-world traffic situations and range from
freeways over rural areas to inner-city scenes with many static
and dynamic objects. The data from the KITTI benchmark
is calibrated, synchronized and timestamped, including both
rectified and raw image sequences.

1https://www.youtube.com/watch?v=JWneKqtPFZs
2https://www.youtube.com/watch?v=Wc3CeFBf3FQ
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Fig. 4. Experiments with the KITTI dataset: Left image; Disparity map; Ground plane mask

Fig. 5. U-disparity and U-disparity labeled for an image in the KITTI
sequence

Fig. 6. Experiments with the KITTI dataset: Polar representation of the dis-
parity map after ground plane removal, θ-disparity before and after labelling

The disparity maps were computed using the ELAS al-
gorithm. As the resolution of the disparity values decreases
exponentially with the distance to the camera, the disparity
images were thresholded to exclude pixels with disparity
values less than 25. A ground plane mask was computed using
the approach described in section III-A. An example image
in the sequence, along with its disparity map and extracted
ground plane is presented in Fig. 4.

The U-disparity map is computed for the disparity image
after excluding the ground plane pixels. Then, morphological
opening, with a square structural element of size 1, is applied
to the U-disparity image after thresholding with a value of
0.05. This results in the labelled regions presented in Fig. 5.

The θ-disparity segmentation is similarly obtained: the θ-
disparity image is thresholded with a value of 0.01, and
morphologically opened with the same structural element (Fig.
6).

The results of both segmentations for the same image can
be comparatively assessed in Fig. 7 as they are both overlaid
on the initial intensity image. The obstacles pixels segmented
in the θ-disparity map are marked with blue, the U-disparity
results are marked with red, while their intersection is marked
in green.

B. Results Obtained with Synthetic Data in Virtual Environ-
ments

A series of 3D virtual environments were designed to
generate benchmark testing stereo sequences for human as-
sistive devices. Since virtual scenes can provide ground truth

Fig. 7. Obstacles detection results for the KITTI dataset: overlaid segmenta-
tion results obtained in both θ and U-disparity images

Fig. 8. Virtual environment: Left image; Disparity map; Ground plane mask

information, testing using such synthetic data can offer valu-
able information about the efficiency of the algorithms and
acknowledge worst case scenarios. Moreover, different envi-
ronment scenarios can be tested without the need to physically
find these locations or recreate some special situations in real-
life environments.

The scenes were designed to mimic common outdoor loca-
tions. The development of the 3D scenes was done using the
Unity game engine. Ground truth segmentation information
was obtained by assigning a label and unique ID to each
object in the scene. Thus, for the virtual environment testing
scenarios the ground plane as well as camera orientation
are straightforward to compute. Although accurate disparity
information for each pixel is also available, the disparity maps
were generated following the same procedure as for the real
environments dataset.

Both U and θ-disparity segmentations were performed in
the same manner (Figures 8, 9 and IV-B), using the same pre-
processing parameters, except for the disparity threshold which
was set to 10, as better disparity resolution was obtained in

Fig. 9. U-disparity and U-disparity labeled for an image in the virtual
environment sequence
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Fig. 10. Virtual environment: Polar representation of the disparity map after
ground plane removal, θ-disparity before and after labelling

Fig. 11. Obstacles detection results for the virtual environment dataset:
overlaid segmentation results obtained in both θ and U-disparity images

the virtual environment. The combined results of the θ and
U-disparity can be observed in Fig. 11.

V. CONCLUSIONS

In this paper we proposed a framework for obstacle detec-
tion in stereo sequences that makes use of multiple representa-
tions of the disparity maps, namely the U-disparity, V-disparity
and θ-disparity histograms. The framework is application
independent and suited for real-time processing requirements.
This is a consequence of approaching the obstacle detection
problem in the 2D space instead of processing the 3D point
cloud associated with each frame in the sequence. The V-
disparity maps are processed for ground plane extraction,
while the regions in the image corresponding to obstacles are
detected in the U and θ representations together. The results
extracted from the θ-disparity image efficiently complement
the U-disparity segmentation, as the union or intersection
of the two outputs can provide more accurate descriptions
of the obstacles, depending on the application. Moreover,
the segmentation in the θ-disparity map reveals the radial
disposition of the obstacles with respect to the camera/user
as well as the free navigable directions in a straightforward
way.

The verification of the proposed approach with datasets
specific to various applications (automotive, assistive devices)
revealed that the algorithm can provide reliable segmentation
of the obstacle occupied regions in the environment. In the
following we would like to assess this approach in the de-
velopment of obstacles identification frameworks that would
also employ obstacles characterisation, either by means of
classification or features descriptions alone.
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