
PRE-PRIN
T

Negative Obstacle Detection for Wearable Assistive 
Devices for Visually Impaired 

 
Paul Herghelegiu, Adrian Burlacu and Simona Caraiman 

Faculty of Automatic Control and Computer Engineering 
Technical University “Gheorghe Asachi”  

Iasi, Romania 
{pherghelegiu | aburlacu | sarustei}@tuiasi.ro 

 
 

Abstract— The research on developing assistive devices for 
visually impaired people greatly relies on image processing 
techniques. Extensive effort is made on detecting the obstacles in 
front of the user. Beside the normal obstacles that the user can 
bump into, another category of obstacles, negative obstacles must 
also be detected. Negative obstacles are usually represented by 
holes in the ground or regions that lay bellow the ground surface. 
Such obstacles represent a potential danger to the visually 
impaired user and could lead to serious injury if not detected. In 
this paper, we introduce a stereo vision system to identify and 
track negative obstacles located in front of the user. The 
identification is performed in the disparity image based on an 
estimation of the ground surface in the stereo images. The 
tracking relies on a camera motion estimation approach. The 
algorithm we introduce in this paper was integrated and tested 
with a wearable assistive device to prove its efficiency. We 
evaluate the accuracy of our solution using various real-life 
scenarios.  

Keywords— visually impaired users; assistive devices; negative 
obstacles 

I.  INTRODUCTION  
Visually impaired people commonly use a white cane to 

help them navigate. They use the cane to scan the environment 
in front of them. The cane is usually less than 2 meters long. In 
some cases, if there is a negative obstacle (e.g. a hole in the 
ground) in front of the user, the scanning technique the visually 
impaired use might fail to detect it. This happens when the 
white cane does not touch the ground, but its end is held at a 
low distance above the ground. Another case is when the 
negative obstacle is not large enough so the user might simply 
not detect its presence. Such situations are extremely dangerous 
to the users as they might fall and injure themselves. 

In current days, a very important research area focuses in 
developing electronic assistive devices for the visually 
impaired people. Such devices aim to help the user navigate in 
an unknown environment. They also help the users have a 
more independent life, not having to depend on others in their 
everyday tasks. The tasks that the assistive devices must meet 
mainly focus on detecting obstacles in front of the user, 
detecting potentially dangerous situations or detecting some 
entities of interest like bus stops, crosswalks, markets, drug 
stores or others. The added value of using such assistive 
devices compared to the various uses of the white cane mainly 
comes from the covered distance ranges, the possibility to 

foresee the position of objects in the environment and to 
evaluate their size and type. This is done without the need of 
direct contact with them. Another added value is the early 
detection of elevated objects (e.g., at head height) as well as 
negative obstacles (e.g., missing sewer caps, inappropriately 
signaled construction work, etc.).  

In this paper we introduce an algorithm to detect the 
negative obstacles in front of the user, in outdoor 
environments. The algorithm is integrated in an assistive 
system for visually impaired, the Sound of Vision system 
(SoV). It is a non-invasive, wearable sensory substitution 
device that assists visually impaired people by creating and 
conveying an auditory and tactile (haptic) representation of the 
surrounding environment. This representation is created based 
on computer vision techniques, updated and conveyed to the 
blind users continuously and in real time. The objective of the 
SoV system is to aid both the perception and the navigation of 
visually impaired users in unknown environments. 

The proposed algorithm for negative obstacles detection is 
tailored for running on mobile devices. It relies on a disparity 
image computed using the stereo vision system integrated in 
the SoV device. The proposed approach aims to minimize the 
required computational time. Thus, we are able to enhance the 
assistive system with this functionality and still avoid adding 
significant delays to its main processing pipeline.   

The paper is organized as follows: Section 2 describes the 
related work. In Section 3 the context and details of our 
algorithm are presented. The results of an experimental 
evaluation are discussed in Section 4. The paper is concluded 
in Section 5. 

II. RELATED WORK 
 A large part of the research on the development of assistive 
devices for the visually impaired has been dedicated to 
obstacles detection. Existing obstacles detection systems for 
the blind can be divided in two classes, based on the computer-
vision technique exploited to extract this information from the 
input images. One class of methods relies on information about 
the planar surfaces in the image, particularly the ground plane 
[1]-[6]. A grouping or a classification of the (remaining) 
pixels/points is used to identify potential obstacles. The 
methods of the second class directly extract information about 
the obstacles from the images, without the need for detecting 
any planar surfaces. These methods either rely on edge 
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information in the images [7]-[10], or infer information on 
potential obstacles directly in a 3D representation of the 
environment [11]-[13]. 

In the last decade, research on detecting negative obstacles 
was mainly reported in robotics, especially in autonomous 
driving of mobile robots.  Coughlan and Shen [14] present 
some results on negative obstacles detection for a wheelchair 
equipped with a stereo vision acquisition system.  The 
proposed approach is based on the analysis of the disparity 
map, with some hard constraints such as “the ground plane is 
then determined by finding the plane that best fits as much of 
the disparity map as possible”. Regarding evaluation, the 
authors do not present any data on how their algorithm 
performs in different scenarios.  

Murarka, et. al. [15], use stereo vision and motion cues to 
detect drop-offs for driving mobile robots with wheels in urban 
environments.  The underlying principle for drop-off detection, 
for an occluding edge, new regions come into view as the robot 
moves towards the edge. For an occluding edge, features above 
the edge will hence appear to move “faster” relative to the edge 
than features below the edge, as compared to a non-occluding 
edge. This approach can detect only frontal drop-offs. The 
work is further extended by Murarka and Kulpers [16] where a 
more extended evaluation is performed.  

Assistive devices based on stereo vision are more complex 
systems and deal with the same goals as in mobile robotics. 
One key aspect is the higher number of degrees of freedom for 
the motion of the stereo system. To the best of our knowledge, 
very few research works have specifically tackled this problem.  
Fazli, et. al. [17], proposed such a method for negative obstacle 
detection using seed-growing and dynamic programming. The 
method is built on multiple stages that include edge extraction, 
disparity map correction and noise removing. The solution 
mostly targets the detection of drop-offs between sidewalks 
and road. 

The solution we propose in this paper is integrated in an 
assistive system that relies on ground information to detect 
obstacles in the environment. The system uses stereovision to 
infer depth information in outdoor environments. To reliably 
exploit this information inherently affected by noise, we 
introduce a temporal tracking and validation mechanism for 
selected candidates. Our method is able to detect various types 
of negative obstacles, both of hazardous (e.g., holes in the 
ground, potholes) and non-hazardous (e.g., difference of 
ground level) nature.      

III. METHOD DESCRIPTION 

A. Context 
The workflow of the SoV system consists in four main 

steps: (1) acquisition of 3D information from the environment, 
(2) 3D reconstruction of the sensed environment and 
segmentation into objects of interest, (3) audio and haptic 
modeling of the processed 3D scene, (4) rendering of audio and 
haptic information to the user. 

The acquisition of 3D information from the environment is 
performed using two types of depth sensors placed onto a rigid 
structure, which can be easily attached to various headgear 

designs. The 3D processing module exploits different 
combinations of sensor data to maximize the system usability 
in different situations (e.g. indoor/outdoor, different lighting 
conditions) and still provide environmental information in 
conditions atypical to standalone sensors. The acquisition 
system also integrates an IMU device that allows recovering 
the orientation of the head and cameras.  

The 3D processing step performs a 3D reconstruction of the 
environment and has the role of identifying the elements of 
interest, such as ground, walls, ceiling, generic obstacles, 
negative obstacles, doors, stairs, signs and texts.  

The detected objects are further encoded using custom 
audio and haptic models. Rendering the audio information can 
be performed by means of several types of headphones: regular 
on/over headphones, in-ear headphones, and custom design 
multi-speaker headphones. The main requirement for the audio 
rendering unit is to be either open or hear-through, such that 
the visually impaired user is still able to perceive the natural 
sounds in the environment. Haptic information is conveyed to 
the user by means of a custom made belt, placed on the user's 
abdomen.  

 Although the 3D acquisition system of the SoV device 
integrates both stereo and structured-light based depth sensing, 
we only refer to its stereo-based outdoor functioning. In this 
mode, the 3D processing component iteratively accumulates a 
3D point cloud representation of the environment, based on 
stereo matching and camera motion estimation. A segmentation 
step, considering both 3D and image features, attempts to first 
differentiate between ground, walls and generic obstacles 
(above ground). Various heuristics are included in this step to 
also detect the presence of doors and stairs. The proposed 
algorithm for negative obstacle detection is integrated in the 
ground estimation step.     

 Once detected, the negative obstacle entities are passed to 
the encoding module of the SoV system, responsible for 
producing the user output. To this end, we provide the position 
in 3D space of the point on the contour closest to the camera 
(in camera coordinate space).  

B. Hypothesis 
By negative obstacle we understand a region of the 

environment that is located below the ground level. These 
regions can come up in the environment in two types: 
- Hazardous negative obstacles – areas below ground that 

emerge due to natural or human factors, e.g., holes in the 
ground due to cracks in the pavement/asphalt, missing 
sewer cap.  

- Man-made negative obstacles – areas below ground 
purposely existing in the environment, e.g., edge of a 
railway platform, stairs down. 

The visually impaired user should definitely avoid the first 
type of obstacles, while the second type can purposely come 
up on their navigation path. Nevertheless, signaling their 
presence is of same utmost importance, both for safe 
navigation and for early environment mapping. In this paper, 
we address the detection of negative obstacles present on 
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horizontal ground, with a negative elevation with respect to 
the ground surface of at least 15 cm.  

We performed an extensive analysis of the disparity maps 
computed for sequences of stereo images containing the 
specified types of negative obstacles, acquired in various 
illumination conditions. We conclude that the areas in the 
image corresponding to negative obstacles can have two 
appearances, depending on their size and illumination 
conditions (Figure 1): 

Type1 - Disparity values for the corresponding pixels in the 
region indicate a negative elevation with respect to the 
adjacent ground area; 

Type2 - Disparity values for the corresponding pixels in the 
region cannot be computed. 

  

Figure 1. Images of negative obstacle and computed disparity maps. Top: 
Negative obstacle of Type 1, in the form of stairs down. Bottom: Negative 
obstacles of Type 2, in the form of missing sewer caps. (Note: the disparity 
images have adjusted brightness for presentation purposes) 

The latter situation usually corresponds to small sized, 
deep holes in the ground (e.g., missing sewer caps). Due to 
lack of light reflection, they are captured by the cameras as 
black, uniform regions for which, the matching between pixels 
in the left and in the right image fails. The disparity 
computation can fail also for other uniformly colored areas. 
The proposed algorithm distinguishes them as described in 
Section III.C.3)) 

C. Proposed algorithm 
The technique we introduce uses a disparity image as input 

data. In this image, we try to identify regions corresponding to 
negative obstacle. The errors and noise in the disparity image 
computation can often lead to false positive detections. To cope 
with such inconsistencies, we rely on a tracking mechanism for 
the validation of selected areas. If such an area in the image has 
consistent features over a number of frames then we mark the 
region as negative obstacle. 

 The main steps of our algorithm are (i) computation of the 
disparity map from the stereo vision system, (ii) detection of 
the ground surface, (iii) selection of negative obstacle 
candidates, (iv) tracking and validation of negative obstacle 
candidates. 

 Although the proposed solution relies on steps already 
integrated in the SoV system, we provide the standalone 

algorithm that can be reproduced outside of the SoV 
environment.  

1) Disparity map computation  
The established features of negative obstacles are valid for 

disparity maps computed with the ELAS algorithm [18]. 
Experiments with several other stereo matching schemes have 
been conducted. However, a set of stable features for negative 
obstacles could not be established, due either to the sparseness 
of the computed map (in the case of Block-Matching (BM) 
and Semi-Global Block Matching (SGBM)), or to the high 
amount of smoothing (BM and SGBM with post-filtering). 
Moreover, we only refer to stereo matching solutions that can 
work in real time.   

2) Detection of ground surface 
Detection of the ground surface is an important step of our 

algorithm. It is exploited for detecting regions with negative 
elevation, but also for the selection of negative obstacle 
candidates. This ensures that, irrespective of their features, the 
algorithm only considers the candidates connected to ground 
areas (regions with sparse or invalid disparity can also appear 
on walls or other surfaces).  

 The detection of the ground plane in stereo images can be 
achieved using different techniques. There are basically two 
approaches to tackle this task: processing the point-cloud 
associated to the disparity/depth map [2], [3], [5] or detecting 
the ground plane directly in the disparity domain [4], [19]-[21]. 
While the point-cloud processing solution is completely 
invariant to camera tilting, the disparity domain approach is 
less computationally demanding. The camera tilt can be 
managed by means of an IMU and/or a specific computer 
vision algorithm.  

 We employ a custom ground detection algorithm, working 
in image space, based on the method in [22]. 

3) Selection of candidates 
A negative obstacle candidate is considered to be a region 

in the disparity map with the following properties, depending 
on its type (as defined in Section III.B): 

Type 1: 
(1) all the pixels inside the region have valid disparity values 
(2) the elevation in 3D space indicates that the pixels of the 

region are positioned below the computed ground, with a 
difference of at least Te1 cm  

(3) the region has an area in image space larger than a 
threshold, Ta1 

(4) the region is connected with ground pixels 

Type 2: 
(1) all the pixels inside the region have invalid disparity values 
(2) the region is connected with pixels having valid disparity 

values  
(3) the region is connected with ground pixels or with pixels 

below ground 
(4) the region has an area in image space larger than a 

threshold, Ta2 
(5) the mean color of the pixels in the region is black 
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The contours of Type 1 candidates are detected in an 
image representing an elevation mask with respect to the 
computed ground level. In this image, the value of a pixel 
indicates its height above ground, compared to the Te1 
threshold (Figure 2). 

  
Figure 2. Type 1 candidate. (left) Original left image; (right) Elevation mask 
overlaid on the original image (green mask indicates detected ground surface, 
red mask corresponds to regions below ground, regions above ground have 
their originl color) 

  
Figure 3. Type 2 candidate. (left) Original left image; (right) Detected 
contours superimposed on the disparity image, for regions larger than Ta2 
pixels. Contours of corresponding non-black regions in the original color 
image will be discarded. 

Property (3) for Type 2 candidates ensures that the contours 
in 3D space can be computed for the region. The contours are 
required in the last step of the algorithm, which performs the 
tracking and validation of candidates. The Type 2 candidates 
are detected on an inverted thresholded disparity map of 
regions classified as ground and below ground. The threshold 
value is 1 as we need to select the regions with invalid 
disparity. On the resulting image we apply a dilation operation 
to slightly enlarge the areas with no disparity. The dilation is 
performed using a 3x3 kernel and one iteration. After these 
preprocessing steps, we apply the contour detection algorithm. 
This will ensure the fact that we can compute a 3D contour for 
the region (Figure 3). We only consider the contours of invalid 
disparity areas connected to ground regions (property 4). 
Moreover, we perform an additional check in color space to 
exclude non-black regions and thus filter out false positive 
detections (property 5).   

4) Tracking and validation of candidates 
Tracking is required to filter out the false positive 

detections. These can appear due to (i) erorrs in ground 
estimation, generating false regions below ground, and (ii) 
errors in the stereo matching step, generating areas with invalid 
disparity or false regions below ground.  

The input to the tracking step is represented by the 3D 
contours of the candidate regions. Tracking all the points of the 
contour is not feasible as the shape of the candidate regions can 
highly differ from one frame to another. To simplify the 
tracking algorithm, we average the position of all the 3D points 
corresponding to one contour. This way we obtain the 3D 
centroid of the area that is bounded by the contour.  

To track a point from one frame to the previous frame, we 
employ a camera motion estimation approach. Having the 

homogenous camera transformation between consecutive 
frames allows us to register the 3D points measured by the 
stereo vision system in the previous frame with the camera 
coordinate system of the current one. 

 However, the motion of a head mounted stereo camera used 
by a walking visually impaired person is highly complex. 
Regarding internal structure, this type of motion is a 
combination of 6-Dof head motion and body motion, the latter 
being dominated only by the forward velocity and yaw angle. 
In addition, visually impaired applications require a higher rate 
of visual odometry update. Hence, the dead reckoning error 
accumulated over time may grow faster than the moving speed 
of the camera. The performance of several camera motion 
estimation methods were analyzed with respect to: robustness 
to motion-blur caused by body motion, high accuracy in 
relation with ground truth. Most of the existing methods make 
use of a sparse set of local visual features, such as feature 
points, in order to estimate the camera motion. We selected the 
camera motion estimation approach by Geiger in the libviso2 
framework [23]. Having a pair of stereo frames as input, it 
outputs an estimation for the (R, t) motion parameterization. 
The detection of feature points is performed using a peak 
threshold technique based on finding local maxima to reduce 
the amount of features. The set of detected feature points is 
then matched between four images, namely the left and right 
images of two consecutive stereo frames. This allows for the 
rejection of outliers due to false correspondences or moving 
objects.  

Given all ’circular’ feature matches found, the feature 
points from the previous frame are projected in 3D space via 
triangulation using the calibration parameters of the stereo 
camera rig. Assuming square pixels and zero skew, instead of 
minimizing the residuals in Euclidean space, the libviso2 
framework makes use of the intrinsic parameters of stereo 
camera to minimize the residuals in the image space, where the 
noise level is similar for all components of the measurement 
vector: 

∑ �𝑝𝑝𝑖𝑖
(𝑙𝑙) − 𝜋𝜋(𝑙𝑙)(𝑃𝑃𝑖𝑖 ,𝑅𝑅, 𝑡𝑡)�

2𝑁𝑁
1 + �𝑝𝑝𝑖𝑖

(𝑟𝑟) − 𝜋𝜋(𝑟𝑟)(𝑃𝑃𝑖𝑖 ,𝑅𝑅, 𝑡𝑡)�
2
,  (1) 

where 𝜋𝜋(𝑙𝑙)denote the projection which takes a 3D point P and 
maps it to a pixel p. Using Gauss-Newton optimization the 
(R,t) motion estimation parameterization is recovered. Also, 
the framework refines the obtained velocity estimates by means 
of a Kalman filter assuming constant acceleration. 

The motion estimation technique previously described is 
usually employed in automotive and robotics applications. For 
visually impaired assistive devices applications the internal 
parameters need to be adapted. A series of 3D virtual 
environments were designed to generate benchmark testing 
stereo sequences for human assistive devices. Since virtual 
scenes can provide ground truth information, testing using such 
synthetic data can offer valuable information about the 
efficiency of the algorithms and acknowledge worst case 
scenarios. Moreover, different environment scenarios can be 
tested without the need to physically find these locations or 
recreate some special situations in real life environments. 

The evaluation of the stereo motion estimation accuracy 
was performed using the mean and standard deviation of two 
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errors: one for rotation (a Frobenius norm that measures the 
differences between the ground truth rotation matrix and the 
estimated one) and one for translation (a Euclidean norm that 
measures the differences between the ground truth translation 
vector and the estimated one). Tests conducted in the virtual 
scenes (with a scene consisting in 376 frames) revealed the 
following results:  

Rotation: mean err 0.1027; std err 0.0736 

Translation: mean err: 0.1719 [m]; std err 0.0813 

To apply the transformation matrix on a pixel of the 
disparity image, we first compute the 3D position of the pixel. 
This is performed using: 

 𝒛𝒛 = 𝒇𝒇∗𝒃𝒃
𝒅𝒅

 ,𝒙𝒙 =  (𝒖𝒖−𝒄𝒄𝒙𝒙)∗𝒛𝒛
𝒇𝒇

 ,𝒚𝒚 =  (𝒖𝒖−𝒄𝒄𝒙𝒙)∗𝒛𝒛
𝒇𝒇

, (2) 
where 𝑥𝑥,𝑦𝑦, 𝑧𝑧 are the 3D coordinates, (𝑐𝑐𝑥𝑥, 𝑐𝑐𝑦𝑦) represent the 
center of projection,  𝑑𝑑 is the disparity value of pixel(𝑢𝑢, 𝑣𝑣), 𝑏𝑏 is 
the baseline of the stereo camera, 𝑓𝑓 is the focal length of the 
camera. 

At this point of the algorithm, we have computed for each 
candidate region a 3D centroid of the points that bound the 
area. Each frame will have a set of computed 3D centroids. 
Next, we track these centroids over consecutive frames. For 
this, we store for each frame all the 3D centroids and the frame 
number they were computed in. 

For each frame, the tracking mechanism is implemented as 
follows:  

• Transform the 3D centroids computed in the last frame 
by applying the camera transformation matrix computed 
between the previous and the current frame 

• Compute the distance between all the 3D centroids 
found for the current frame and the transformed 3D 
centroids from the previous frame 

• If the distance between two such 3D centroids is lower 
than a threshold, update the frame number of the 3D 
centroid from the current frame with the frame number 
of the transformed 3D centroid 

• If the difference between the updated frame numbers 
and the current frame number is higher than a threshold, 
consider the corresponding centroid as belonging to a 
region in the image that has to be avoided 

A candidate becomes valid and signaled to the user as 
negative obstacle after continuously tracking it over a 
minimum number of frames (Figure 4). 

  
Figure 4. Contours of selected candidates tracked between two consecutive 
frames. The centroids of the candidates detected in the current frame are 
marked with blue, while the reprojected centroids of candidates from previous 
frame are marked with cyan.  

IV. EXPERIMENTAL RESULTS 

A. Implementation details 
The proposed algorithm was implemented using C++ and 

OpenCV [24].  

The threshold for negative elevation, Te1, in case of Type 1 
candidates was set to 15cm. The value for the area thresholds, 
Ta1 and Ta2, was empirically selected to be 150 pixels.  

For Type 2 candidates, we only consider black regions on 
the ground, with invalid disparity values. We compute the 
mean color of the candidate pixels in the left camera image, in 
RGB space. We use the maximum norm to impose a color 
difference threshold of 20.  

For all candidates the 3D centroid is computed and 
compared from the Euclidean distance point of view with the 
3D centroids of the candidates from the previous frame. If the 
distance in 3D space is lower than a threshold, the track of the 
candidate is incremented. If the 3D centroid on a contour 
cannot be associated with a previously computed 3D centroid, 
it follows that the candidate is new and it will only be 
considered when processing the subsequent frames. The 
minimum length of the track, before a candidate is validated 
depends on the camera acquisition rate. A value of 5 frames 
was empirically set in our experiments with a 15fps stereo 
acquisition rate. The threshold for the distance between 3D 
centroids of tracked candidates was considered 50cm, for both 
types. 

B. Computing time 
Stereo sequences containing various types of negative 

obstacles were acquired using a LI-OV580 stereo system from 
Leopard Imaging. It provides images with a resolution of 2560 
x 720 (2 x 1280 x 720) at 15 fps. The stereo camera was 
mounted on a custom made headgear with a baseline of 15cm.  

We evaluated the computing time on two mobile platforms, 
an Nvidia Tegra X1 (quad-core ARM Cortex-A57, Ubuntu 
L4T) and an Ultrabook (Intel Core i7-4720HQ, Windows 10). 
The average execution time for the detection and tracking of 
negative obstacle candidates, computed over several sequences, 
with a total number of 790 frames, was 23.85ms on the TX1 
platform and 11ms on the Ultrabook. Additionally, the 
execution times for disparity computation using ELAS with the 
Robotics setup and an OpenMP implementation, estimation of 
the ground surface based on the v-Disparity approach and the 
camera motion estimation step are detailed in TABLE I. . We 
reach an overall performance of the entire algorithm of 7.8 fps 
and 3 fps for the two platforms, respectively.   

C. Accuracy of detection 
For evaluation purposes, we recorded several sequences of 

images, containing the following types of negative obstacles: 
stairs down, edge of railway platform, missing sewer caps 
(TABLE II. ). We captured the images in two situations, 
walking by and towards the negative obstacles. S1 was 
recorded while walking along a set of stairs going down. A 
handrail divides the stairs down area in two negative 
obstacles. S2 contains images with a single negative obstacle 
instance. S3 captures a complex and difficult scenario of 
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rough terrain, with the presence of three simultaneous 
instances of negative obstacles (two missing sewer caps and 
one area below ground). For all sequences, we performed the 
evaluation of our algorithm with respect to an environment 
reconstruction up to 5m distance in front of the camera/user. 
This is the normal usage scenario of the SoV system. To this 
end, the total number of ground truth instances were counted 
within this distance (estimated in the images based on the 
computed disparity). 

TABLE I.  COMPUTATIONAL PERFORMANCE OF THE PROPOSED 
NEGATIVE OBSTACLE SOLUTION 

Computing 
Platform 

Operation Execution time
(ms) 

Nvidia TX1 Stereo correspondence 162.5 
Camera motion estimation 103 

Ground estimation 33.5 
 Negative obstacles – Type 1 22 

Negative obstacles – Type 2 1.8 
TOTAL 322.8 

Ultrabook Stereo correspondence 68 
Camera motion estimation 42 

Ground estimation 8.4 
Negative obstacles – Type 1 9 
Negative obstacles – Type 2 1 

TOTAL 128.4 

TABLE II.  DESCRIPTION OF TEST DATASETS 

Sequence 
ID 

Total 
Frames 

Negative obstacles 
type instances 

S1 213 stairs down (Type 1) 253 
S2 300 railway (Type 1) 170 
S3 277 missing sewer caps (Type 1,2) 

region below ground (Type 1) 501 

TABLE III.  RESULTS OF EVALUATION 

Sequence TP FP TPR PPV 
S1 230 56 0.82 0.87 
S2 160 20 0.94 0.89 
S3 446 39 0.89 0.92 

AVERAGE 0.90 0.87 
 

The accuracy evaluation was performed using standard 
metrics, i.e., True Positive Rate (TPR) and Positive Predictive 
Value (PPV): 

𝑇𝑇𝑃𝑃𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁

 ,  (3) 
 

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 ,  (4) 
where 𝑇𝑇𝑃𝑃 – true positives, 𝐹𝐹𝑃𝑃 – false positives, 𝐹𝐹𝐹𝐹 – false 
negatives.  The results of our evaluation are presented in 
TABLE III.   

The high number of false positive detections in the stairs 
sequence (S1) is almost exclusively due to the presence of 
black obstacles connected to the ground (e.g., pillars of the 
handrail), represented by areas with invalid disparity (Figure 5 
– middle row). While they are not negative obstacles per se, 
they still represent entities that need to be avoided by the user. 
The negative obstacles in sequence S2 did not pose any 
problems to our algorithm (Figure 5 – top row). In this case, 
the false negative detections are very few (the track of the 
single negative obstacle is lost in only one frame), while the 
false positive ones are caused by errors in disparity estimation 
leading to imperfect ground surface fitting. This causes that 
small regions of the railway platform to be incorrectly 
considered below ground. S3 contains two areas with missing 
sewer caps, one of them represented by a Type 1 region, while 
the other is represented by a Type 2 region (Figure 5 – bottom 
row). As the camera approaches, it gets divided in two 
separate regions, of both types. Neither the algorithm, nor the 
evaluation considered merging two regions of different types 
in a single negative obstacle. The implementation of our 
tracking mechanism allows filtering most of the false positive 
detections. However, this is achieved at the cost of increasing 
the false negative rate when the track is lost. It takes 5 frames 
to re-validate a candidate after its track is lost in one frame.  

On average, we miss the negative obstacles present in the 
scene in less than 10% of the time. 

V. CONCLUSIONS 
In this paper we present a novel algorithm to detect and 

track negative obstacles in stereo sequences. The method uses 
stereo correspondence and ground plane estimation to identify 
such potentially dangerous situations. The validation of 
negative obstacle areas is performed using tracking based on 
camera motion estimation. The algorithm was integrated with a 
wearable assistive device for visually impaired users. As the 
processing unit is not very powerful in terms of performance, 
all computations must be kept as efficient as possible. Also, 
such algorithms must run in real time so the user has time to 
react to the feedback provided by the system regarding 
potentially dangerous situations. The proposed algorithm was 
tested using real world data and multiple scenarios providing 
promising results. It provides results in real time and with high 
accuracy, on portable computing platforms.  

The features of the selected negative obstacle candidates 
were defined based on the intended use of the assistive system. 
Thus, we only consider regions with invalid depth information 
or at more than 15cm below ground. The detection of curbs is 
also possible with our algorithm. However, due to the quality 
of the depth maps that can be computed in real time based on 
wearable stereo vision systems, curbs detection cannot be 
performed with the same reliability.  
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Figure 5. Results of negative obstacles detection. From left to right: Original left image; Disparity map computed with Elas; Elevation mask overlaid on the 
original image (green mask indicates detected ground surface, red mask corresponds to regions below ground, regions above ground have the originl color); 
Negative obstacles tracked over 5 consecutive frames (magenta – areas with invalid disparity, cyan – areas below ground). 
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