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Abstract—Accurate ground area detection is one of the most
important tasks in various stereo vision based applications, such
as autonomous driving or assistive technologies for visually
impaired. Correct assertion of the ground geometry improves
obstacle detection algorithms by eliminating false positive loca-
tions in image. In this paper we provide an application oriented
evaluation on the correlation of the ground geometry with the
quality of the disparity map. The disparity map is processed
in its V-map representations and two methods for 3D ground
area points identification are discussed. Next, different types of
surfaces are fitted and evaluated using real data from automotive
and visually impaired assistive applications.
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I. INTRODUCTION

Free space and obstacle detection represent two of the most

active research areas that involve active or passive sensors.

Both are undisputed related with an accurate ground area

identification. Stereo vision systems are passive sensors that

can be used to evaluate data and measure distances in front

of the camera. Multiple areas, such as robotics, automotive

and assistive systems, benefit from research results involving

stereo vision cameras.

The key factor of distance computation is a correct evalua-

tion of the disparities between the left and right image. Pro-

cessing algorithms for the disparity map were initially reported

in applications involving automotive and mobile robotics. In

[1] an algorithm that analyses the V-disparity map is used to

solve the obstacles detection problem for autonomous driving

applications. In this work the goal is to identify free road

space and obstacles. Wedel, et.al., [2], tackle the non-planarity

of the road surface in real autonomous driving applications.

They reveal an algorithm that uses flexible B-spline curves for

piecewise planar or quadratic ground detection. The algorithm

was evaluated mostly on highways were the free space in front

of the vehicle is large and the B-spline curves can be accurately

recovered.

The standard assessment for ground area is that it can be

modeled as a plane. This assumption is true in applications

that can generate dense disparity maps with low noise [3].

Otherwise, in conditions of non-uniform illuminations, sun

glare, shadows, etc., the plane fitting involves multiple post

filtering steps. These problems can be solved by modeling the

ground using high order surfaces.

In the past two decades an important amount of work

was reported on developing systems that can improve the

quality of life for visually impaired. Visual impairment, or

vision loss is a severe condition that seriously affects the

life of the individuals suffering from it. Blind persons face

challenges doing everyday things we take for granted, like

reading or walking. One of the main aspects that underlie

spatial navigation is the allocentric sense, the awareness of

one’s body relative to the environment. For sighted people, the

brain relies mostly on information from the eyes to accomplish

the navigation tasks. One of the most important problems for

blind people when moving in open or closed environments is

precisely the lack of external references, creating a distortion

of absolute directions, of the position of their heads and bodies

related to free space and obstacles.

Regarding ground area identification for visually impaired

applications most techniques assume a plane model. This plane

model can be recover using a local approach, such as the

one presented in [4], or a global one, as the one depicted

in [5]. The local approach assumes the ground to be a plane

that can be revered by exploring neighboring patches. The

global one makes use of RANSAC for ground plane equation

identification. Multiple variations of the RANSAC approach

were reported later, each trying to improve the classic approach

[6], [7].

In this paper we present a ground geometry assessment

scheme using new disparity map analysis methods. Applica-

tion wise, we evaluate different ground geometries which can

further increase the robustness of obstacles and best free space

detection. The targeted applications involve autonomous driv-

ing (KITTI database) and visually impaired assistive devices

(Sound of Vision Project database). To the authors knowledge,

this is the first attempt at evaluating outdoor ground plane

geometry for visually impaired assistive solutions.

In the section II the main properties of the disparity map

are discussed. The ground geometry assesment scheme is

presented in section III, while section IV illustrates the exper-

imental results. In the end of the paper we present conclusions

and future work.

II. STEREO VISION

This section presents the main properties of the disparity

map and the properties of one of its representation: the V-

disparity map.
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Algorithm 1: V-Disparity Map Computation

Input: Disparity map d(x, y)
Output: V-Disparity Map dv(x, d)

1 for each ith column in d do
2 for each jth line in d do
3 if d(i, j) > 0 then
4 dv(j, d(i, j)) + +

A. Disparity Map

Stereo vision system require a set of intermediary steps

before the practical exploitation can start. These steps are

needed for the recovery of intrinsic and extrinsic parameters,

which represent the calibration phase of any visual acquisition

device. Once the calibration phase is finalized, the acquisition

can start. Next, rectification ensures distortion removal and

stereo alignment.

For multiple types of applications and especially for au-

tonomous driving and blind assistive technologies, the corre-

spondence problem between the left and right image is of key

importance. Solving this problem leads to the computation of

the disparity maps [8]. In order to easily find the solution,

the correspondence problem can be simplified to a one-

dimensional search along the epipolar lines. Thus, building

a cost function that measures image similarity and following

an optimization procedure, the disparity map can be recovered

[9], [10].

Among the methods proposed for computing the disparity,

the Efficient Large-Scale Stereo Matching (ELAS) algorithm

[11] proved very good results for various types of stereo

acquisition systems. Using a Bayesian approach, this algorithm

reported good results even for images with relatively low

texture. The main idea of the algorithm is to use a triangulation

on a set of robustly matched support points to reduce the

matching ambiguities of the remaining points [11]. This allows

an efficient analysis of the disparity map, yielding accurate

dense reconstruction without the need for global optimization.

B. V-Disparity

The geometrical content in 3D reconstructed scene can be

interpreted by using the V-Disparity map [1] which embeds

information that can be used to recover the ground area and

vertical surfaces. Building the V-disparity map requires the

computation of disparity histogram for each line in the dispar-

ity map. This construction leads to two important features in

the V-Disparity map, which are that major planar surfaces have

corresponding line representations with predefined slopes and

vertical surfaces are connected with vertical line segments.

The V-Disparity map can be computed using the following

steps. Let d(x, y) denote the disparity map for a stereo pair,

where (x, y) is a position in the image. Consider h, a function

that sums up all the positions with the same disparity value on

every row of the image h(d(x, y)) = dv(x, d), where dv(x, d)
denotes the V-Disparity map.

Fig. 1: First row KITTI - left and right frame,

Second row: disparity map and v-disparity

Ground Surface 

                                        Quadratic surface evaluation  Hough line detection 
Method 1 / Method 2 

roll / pitch 
compensation

Fig. 2: Ground surface recovery scheme

The implementation of the V-disparity computation steps

can be summed up in Algorithm 1. An example of V-disparity

map is depicted in fig.1. The left and right frames are part of

the KITTI automotive database.

III. GROUND IDENTIFICATION AND GEOMETRY

ASSESSMENT ALGORITHM

In this section, we detail some of the problems that emerge

when dealing with ground recovery in complex stereo vision

guidance applications. When the ground occupies a significant

region in the image it usually corresponds to a dominant line

in the V-disparity map and is associated with a planar surface.

This is the reason for most of the reported works being on

ground plane detection. An important role in establishing the

accuracy of the ground plane detection is the quality of the

disparity map, which is a key factor that will be further detailed

in the experimental results subsection.

As a solution to these problems, a ground area detection

scheme is proposed (fig. 2). The first step is to rectify the left

and right images using the stereo system calibration parame-

ters. The disparity map is computed using the rectified images.

For the proposed scheme, the disparity map is recovered by
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employing the ELAS algorithm (section II-A). The dense

disparity map is further analyzed and the following ground

identification algorithm is obtained.

An important implementation issue rises when the ground

is not horizontal. This configuration does not have a direct

correspondence in the V-disparity map, which makes the

estimation of the ground using the Hough Transform a difficult

task. High values of roll angle imply a counter rotation of the

disparity map before generating the V disparity representation.

The roll angle of the camera can be recovered by using

an extra sensor such as an Inertial Measurement Unit (IMU)

[12] or using visual odometry (VO) [13]. Visual odometry

is a technique for estimating the motion of a moving vehicle

using video input from its on-board cameras. Once the camera

motion is available, the values for the roll-pitch-yaw angles

are recovered. Using the roll angle, the V-disparity image is

rotated to be horizontally aligned, which ensures a robust

ground area detection. Once the roll bias is corrected, the

detection of the ground area lines in the V-Disparity map can

be done by employing the Hough Transform [14].

In order to identify the line in the V-disparity map that is

the true correspondent to the ground area we first need to have

a value for the tilt angle (pitch) of the stereo vision camera.

For automotive applications the value of the pitch has a very

small bias from the one obtained in the extrinsic calibration

stage. For the visually impaired applications the estimation of

the tilt angle tends to be more complex because of the higher

number of degrees of freedom for the camera motion.

The initial value of the pitch can be obtained using [2]

tan θ =
h

bf
d+

1

f
(cy − vy), (1)

where h is the ground related height of the stereo system, b
is baseline, f is the focal length, cy is the s the y-coordinate

of the principal point in the image and the pair (vy, d) is a

point in the V-disparity map. A robust estimate of the tilt angle

using a set of V-disparity points is obtained by analyzing the

histogram of the tan θ values calculated in (1). The tilt angle

is found as the maximum in this histogram. In addition, as a

quality measure, the variance and the number of V-disparity

points supporting the found tilt angle are used.

For the resulted pitch, the perfect slope of the line from

V-disparity that corresponds to the best ground area candidate

is given by [15]:

g =
h

b cos θ
. (2)

Using the value of the perfect slope, the Hough transform can

be used to recover all the straight lines that match a certain

confidence interval in relation to g.

To speed up the line detection algorithm and still maintain

high robustness, one of the following two methods can be

considered:

1) extract the line with the closest slope to g only from the

lower half of the V-disparity map;

2) extract the line with the closest slope to g only from the

lower quarter of the V-disparity map. Add points from

V-disparity that verify the line equation;

The previous methods are employed under the assumption that

the ground surface corresponds to a line that contains not have

less than a user defined number of pixels located on each line.

Once the line is recovered from V-disparity the 3D fitting

procedure can start. For the applications targeted by this work,

we have chosen four types of surfaces, each with a different

number of parameters denoted by (S #parameters):

(S3)z = ax+ by + c

(S4)z = ax+ by + cxy + d

(S5)z = ax2 + by2 + cx+ dy + e

(S8)z = ax+ by + cxy + dx2y + ey2x+ fx2 + gy2 + h

Each of these surfaces will be evaluated in comparison with

ground truth annotated stereo frames. The experimental results

are presented in the next section.

IV. EXPERIMENTAL RESULTS

This section presents the experimental results obtained by

our evaluation. Two types of applications were considered:

autonomous driving and visually impaired people assistance.

Regarding experimental data, for autonomous driving appli-

cations we used the KITTI Vision Benchmark Suite [16]

(fig. 3 up). For the visually impaired assistive device (fig. 3

down) application we used the Sound of Vision Project (SOV)

database (https://www.soundofvision.net).

Fig. 3: up - KITTI acquisition setup; down - SOV acquisition

setup
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A. Experimental data

1) The KITTI benchmark - Autonomous driving: The KITTI

benchmark dataset [16] was design for evaluating autonomous

driving research algorithms. The autonomous platform was

equiped with high resolution stereo PointGrey Flea2 camera

systems. The design of the stereo system lead to a baseline

of roughly b = 0.54[m] between the cameras. The sequences

were captured by driving on highways or around a mid-size

city. Both static and dynamic objects appear in sequences.

Manual labeled objects in 3D point clouds provide accurate

3D bounding boxes for multiple object classes including the

ground area.

2) The SOV benchmark - Visually impaired people assistive
devices: The goal of the Sound of Vision project is to design,

implement and validate an original non-invasive hardware and

software system to assist visually impaired people by creating

and conveying an auditory representation of the surrounding

environment. Regarding stereo vision acquisition, a stereo

RGB camera - LI-OV580 from Leopard Imaging - is used

for outdoor image capture. The two cameras are mounted on

separate PCBs and are connected by wire to the central unit.

The main advantage of this design is that the baseline can

be configured specifically for the application. The Acquisition

module captures Stereo frames, synchronizes them with the

IMU data, rectifies the left and right images and then applies

a stereo correspondence algorithm (Elas or SGBM) in order to

compute the disparity map. Regarding resolution, the system

acquires and rectifies stereo image pairs of a larger resolution,

i.e., 1280 x 720. In order to function properly, processing

algorithms that make use of stereo images require the physical

characteristics of the cameras. After calibration, the reported

intrisic parameters were: focal length f = 374.742, projection

point coordinates cx = 403.958, cy = 194.223 and baseline

b = 0.148221[m].

B. Experimental Results

In this section we reveal the evaluation results of the

proposed ground surface recovery scheme. We target two types

of applications: autonomous driving and visually impaired

assistive awareness. Each of these applications is challenging,

with a higher complexity degree for the assisting devices for

visually impaired.

The standard assessment for ground area is that it can mod-

eled as a plane. This assumption is true in applications that can

generate dense disparity maps with low noise. Otherwise, in

conditions of non-uniform illuminations, sun glare, shadows,

etc., the plane fitting involves multiple post filtering steps (e.g.

tunning of the height above ground threshold that decides

whether a 3D point belongs to the ground or not).

The evaluation process consist in the following steps:

(i) Use the disparity map to compute the V-disparity repre-

sentation

(ii) The two methods described for line recovery in section

III are employed and two corresponding 3D point clouds

are computed

(iii) For each of the two point clouds resulted in the previous

step, fit the four surfaces (S3, S4, S5, S8) presented in

section III.

(iv) Use ground truth labeled images of the tested frames

to compute a fitting percentage. This will reveal the

accuracy of the line recovery methods and surface model

fitting.

A Matlab implementation of the proposed ground surface

fitting scheme was used for experimental results. In fig. 4

and fig. 5 two results of the proposed scheme are illustrated.

In both cases we can observe that recovering the ground

equivalent line from the V-disparity map using method 2 gives

better results than method 1 for any of the considered surface

models. Also, in comparison with classic planar fitting, adding

xy factors and squares of the individual x and y coordinates

in the surface equation leads to more accurate results.

These conclusions are sustained by the numerical results

that are depicted in Tables I, II and III. In these table we have

the fitting percentages for three sequences: a sequence with 30

frames from KITTI, a second sequence with 25 frames from

KITTI and a sequence with 35 frames from SOV.

S3 S4 S5 S8
Method 1 70.03% 70.22% 61.2% 75.13%
Method 2 71.3% 71.48% 62.24% 76.35%

TABLE I: Kitti sequence 1, 30 frames

S3 S4 S5 S8
Method 1 81.55% 81.71% 74.69% 80.79%
Method 2 82.18% 82.15% 75.33% 82.45%

TABLE II: Kitti sequence 2, 25 frames

S3 S4 S5 S8
Method 1 71.86% 71.83% 69.35% 70.19%
Method 2 86.5% 88.12% 83.12% 76.74%

TABLE III: SOV sequence, 35 frames

For the KITTI sequences the highest percentage is obtained

by the surface model S8, where we have the highest number of

parameters. The percentage difference between method 1 and

method 2 of v-disparity line detection is lower than 3%. This

is a result of large baseline of the stereo acquisition system. In

comparison, for the SOV sequence the percentage difference

between method 1 and method 2 of v-disparity line detection

approximately 15%, which underlines the complexity induced

by the shorter baseline and higher motion degrees of freedom.

The combination between method 2 and surface S4 gives the

highest fitting percentage (88, 12%).
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Second row: ground area for each surface from 1 to 4 obtained using method 1 3D points

Third row: ground area for each surface from 1 to 4 obtained using method 2 3D points

Fig. 5: First row: SOV - left and right frame, disparity map and ground truth labels

Second row: ground area for each surface from 1 to 4 obtained using method 1 3D points

Third row: ground area for each surface from 1 to 4 obtained using method 2 3D points

V. CONCLUSIONS

In this paper we proposed a ground geometry assessment

scheme for stereo vision based applications. This research was

focused on the evaluation of different types of surface models

that can accurately describe the ground area in complex appli-

cations. Two types of applications areas were chosen for test-

ing benchmarks: stereo based autonomous driving and stereo

based visually impaired assistive devices. For autonomous

driving the KITTI database was considered, while for visually

impaired assistive device the choice was the database of the

Sound of Vision project.

The experimental results showed that a key factor is the

quality of the disparity map and the length of the baseline of

the acquisition system. The accuracy for KITTI dataset can be

increased if an equation model with high number of parameters

is used z = ax+by+cxy+dx2y+ey2x+fx2+gy2+h. For

the SOV dataset the best results were obtained by the z = ax+
by+ cxy+ d model. These results lead to the conclusion that

in non-ideal acquisition conditions the addition to the standard

ground plane equation of xy factor and squaring factors for x
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and y coordinates could increase the accuracy of the ground

detection.

Future work will be dedicated to real time obstacle detection

in complex environments with the visually impaired assistive

devices.
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